Coating processes – Direct application of electrical – magnetic – wave – or... – Pretreatment of substrate or post-treatment of coated substrate
Reexamination Certificate
2001-05-02
2003-05-13
VerSteeg, Steven H. (Department: 1753)
Coating processes
Direct application of electrical, magnetic, wave, or...
Pretreatment of substrate or post-treatment of coated substrate
C427S576000, C204S192320, C204S192350, C438S479000, C438S622000, C438S653000, C438S714000, C438S720000, C438S734000
Reexamination Certificate
active
06562416
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a method of manufacturing a semiconductor device exhibiting reduced capacitance loading, improved electromigration resistance and increased reliability. The present invention has particular applicability in manufacturing high density, multi-level semiconductor devices comprising sub-micron dimensions having low resistance vias and exhibiting rapid circuit speed.
BACKGROUND ART
As integrated circuit geometries continue to plunge deeper into the sub-micron regime, it becomes increasingly difficult to satisfy the demands for dimensional accuracy. Moreover, interconnection technology is constantly challenged to satisfy the ever increasing requirements for high performance associated with ultra large scale integration semiconductor devices. The speed of semiconductor circuitry varies inversely with the resistance (R) and capacitance (C) of the interconnection system. The higher the value of the R×C product, the more limiting the circuit speed. As integrated circuits become complex and feature sizes and spacings become smaller, the integrated circuit speed becomes less dependent upon the transistor itself and more dependent upon the interconnection pattern. Thus, the performance of multi-level interconnects is dominated by interconnect capacitance at deep sub-micron regimes, e.g., less than about 0.12 micron. The rejection rate due to integrated circuits speed delays in sub-micron regimes has become a limiting factor in fabrication.
Conventional semiconductor devices comprise a semiconductor substrate, typically doped monocrystalline silicon, and a plurality of sequentially formed interlayer dielectrics and conductive patterns. An integrated circuit is formed containing a plurality of conductive patterns comprising conductive lines separated by interwiring spacings, and a plurality of interconnect lines, such as bus lines, bit lines, word lines and logic interconnect lines. Typically, the conductive patterns of different levels, i.e., upper and lower levels, are electrically connected by a conductive plug filling a via hole, while a conductive plug filling a contact hole establishes electrical contact with an active region on a semiconductor substrate, such as a source/drain region. Conductive lines are formed in trenches which typically extend substantially horizontal with respect to the semiconductor substrate. Semiconductor “chips” comprising five or more levels of metallization are becoming more prevalent as feature sizes shrink into the deep sub-micron regime.
A conductive plug filling a via bole is typically formed by depositing an interlayer dielectric (ILD) on a metal level comprising at least one metal feature, forming an opening through the ILD by conventional photolithographic and etching techniques, and filling the opening with a conductive material. The excess conductive material or overburden on the surface of the ILD is typically removed by chemical-mechanical polishing (CMP). One such method is known as damascene and basically involves forming an opening in the ILD, such as a trench or via hole, and filling the opening with a metal to form a metal line or via, respectively. Dual damascene techniques involve forming an opening comprising a lower contact or via hole section in communication with an upper trench section, and filling the opening with a conductive material, typically a metal, to simultaneously form a lower contact or via in contact with an upper conductive line.
Copper (Cu) and Cu alloys have received considerable attention as alternative metallurgy to aluminum (Al) in interconnect metallizations. Cu is relatively inexpensive, easy to process, and has a lower resistively than Al. In addition, Cu has improved electrical properties vis-a-vis tungsten (W), making Cu a desirable metal for use as a conductive plug as well as conductive wiring. However, due to Cu diffusion through dielectric materials, such as silicon dioxide, Cu interconnect structures must be encapsulated by a diffusion barrier layer. Typical diffusion barrier materials include tantalum (Ta), tantalum nitride (TaN), titanium (Ti), titanium nitride (TiN), titanium-tungsten (TiW), Tungsten (W), tungsten nitride (WN), Ti—TiN, titanium silicon nitride (TiSiN), tungsten silicon nitride (WSiN), tantalum silicon nitride (TaSiN) and silicon nitride for encapsulating Cu. The use of such barrier materials to encapsulate Cu is not limited to the interface between Cu and the ILD, but includes interfaces with other metals as well.
Cu interconnect technology, by and large, has been implemented employing damascene techniques, wherein a dielectric layer, e.g., interlayer dielectric, is formed over a patterned underlying metal level having a capping layer thereon, e.g., Cu or Cu alloy features with a silicon nitride capping layer. An opening is formed in the dielectric layer. A barrier layer and optional seedlayer are then sequentially deposited, followed by Cu deposition, as by electrodeposition or electroless deposition.
The dielectric constant of materials currently employed in the manufacture of semiconductor devices for an interlayer dielectric (ILD) ranges from about 3.9 for dense silicon dioxide to over 8.0 for deposited silicon nitride. In an effort to reduce interconnect capacitance, dielectric materials with lower values of permitivity have been explored. The expression “low-k” material has evolved to characterize materials with a dielectric constant less than about 3.9, based upon a value of the dielectric constant of a vacuum as one (1). One type of low-k material that has been explored are a group of spin on or CVD siloxane materials, such as hydrogen silsesquioxane (HSQ) and methyl silsequioxane (MSQ) and BLACK-DIAMOND™ dielectric available for Applied Materials, Santa Clara, Calif. and silicon-carbon-oxygen-hydrogen (SiCOH) organic dielectrics. There are several organic low-k materials, typically having a dielectric constant of about 2.0 to about 3.8, which offer promise for use as an ILD, such as FLARE 20™ dielectric, a poly(arylene) ether, available from Allied Signal, Advanced Micromechanic Materials, Sunnyvale, Calif. BCB (divinylsiloxane bis-benzocyclobutene) and SILK™ dielectric, an organic polymer similar to BCB, both available from Dow Chemical Co., Mildland, Mich.
In implementing Cu and/or Cu alloy damascene techniques to form interconnection patterns with dimensions in the deep sub-micron regime, particularly when employing various low-k materials, including porous oxides, such as dielectric oxides having a porosity of about 30% to about 80% and a dielectric constant (k) of about 2.0 or lower, various problems evolve which degrade the resulting semiconductor device. For example, copper readily diffuses into conventional silicon-based materials such as polysilicon, single-crystalline silicon, silicon dioxide, and low-k inorganic and organic materials. Once semiconductive silicon-based materials are Cu doped, transistors made within or in close proximity to the Cu doped silicon-based regions either cease to function properly or are significantly degraded in electrical performance.
Several dielectric materials have evolved which contain halogens, such as fluorine (F), e.g., F-doped silicon dioxide derived from tetraethyl orthosilicate (F-TEOS) and F-doped silicate glass (FSG). In implementing conventional damascene techniques with Cu, it was found that the barrier layer initially deposited to line the opening does not adhere well to the dielectric layer, particularly F-containing low-k ILDs such as F-TEOS and FSG. Such an adhesion problems adversely impact electromigration resistance and device reliability.
Additional problems attendant upon implementing Cu or Cu alloy interconnect technology stem from the difficulty in removing a thin copper oxide film formed on the upper surface of the lower Cu or Cu alloy metal feature by chemical mechanical polishing (CMP), leading to voids, electromigration problems and increasing vias resistance. Another source of via resistance stems from the presence of polymers or polymeric deposits generat
Hopper Dawn
Huertas Robert A.
Ngo Minh Van
Advanced Micro Devices , Inc.
VerSteeg Steven H.
LandOfFree
Method of forming low resistance vias does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of forming low resistance vias, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of forming low resistance vias will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3004455