Method of forming a storage node of a capacitor that...

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S396000, C257S303000, C257S306000

Reexamination Certificate

active

06391712

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of forming a storage node of a Capacitor.
2. Description of the Background Art
With the development of fabrication techniques for a semiconductor device, and the extension of the applicable fields thereof, mass storage devices are being developed. In addition, with the high integration of a circuit, the area of a unit memory cell is being decreased, and cell capacitance is also being decreased. In particular, in a DRAM(Dynamic Random Access Memory), using a capacitor as an information storage unit and including a switching transistor as a controllable signal transfer unit connected to the capacitor, since a decrease in cell capacitance according to the decrease in unit memory cell area degrades the readability of a memory cell and increases soft error rate, the problem of the increase in cell capacitance must be solved for high integration of a semiconductor memory device.
The basic structure for the capacitor in the memory cell includes a lower electrode, dielectric film, and an upper electrode, and as a method for obtaining a larger capacitance in a small area, the following studies are being made.
First, the thickness of a dielectric film is closely connected with dielectric properties, and the main factors for limiting thickness are a leakage current and breakdown voltage of a dielectric. With a given thickness of the dielectric film, as the leakage current becomes smaller and the breakdown voltage becomes larger, the dielectric becomes better.
Second, in order to increase the effective area of the capacitor, various types of capacitors, such as a planar-type, trench-type, stack-type, cylinder type-type, combination thereof, etc., are formed.
Third, a high dielectric having a smaller leakage current, larger breakdown voltage, and larger dielectric constant can make the thickness of a dielectric film smaller than the physical thickness thereof, and can decrease the size of a memory cell and increase capacitance.
Among a variety of methods for increasing the effective area of a capacitor, the method for increasing capacitance by increasing the surface area of a capacitor by growing hemispherical grains (hereinafter, HSG) on the surface of a storage node, generally, a lower electrode, in a DRAM device of 16~256 MB is more frequently applied than other methods for increasing the surface area of a capacitor by forming a capacitor structure in a three-dimensional structure, such as a trench-type, cylinder-type, etc. The above method for increasing capacitance by growing HSG on the surface of a storage node is a method using an unique physical phenomenon, which occurs in a process of phase-changing amorphous silicon into polycrystal silicon. When heat is applied to amorphous silicon after depositing the amorphous silicon on the surface of a storage node, the amorphous silicon forms fine hemispherical grains to thus be changed into polycrystal silicon having an uneven surface. The surface of the storage node of the thusly-formed HSG polycrystal silicon capacitor has a surface area 2-3 times larger than a conventional smooth surface capacitor.
After the HSG growth, however, a bridge between storage nodes of the capacitor occurs due to additional growth of HSG or breakdown of HSG by thermal treatment in the successive process, thus decreasing product yield.
FIG. 1A
is a cross-sectional view illustrating a DRAM cell having HSG grown on inner walls and outer walls of a cup-type storage node. Reference numeral
1
denotes a gate,
2
denotes a landing pad,
3
denotes a bit line,
4
denotes a storage node contact,
5
denotes a nitride film,
6
denotes a storage node, and
7
denotes HSG, respectively. It is shown that the HSG grown on the inner and outer walls of two adjacent storage nodes are connected with one another; thereby forming a HSG bridge.
To suppress the formation of such a HSG bridge, HSG can be grown only on the inner walls of the storage node.
FIG. 1B
is a cross-sectional view illustrating a DRAM cell having grown HSG only on the inner walls of the cup-type storage node, wherein it is shown that HSG
7
are separated from one another by a nitride film
9
. In this case, however, since the HSG.
7
are grown only on the inner walls of the storage node
6
, capacitance is decreased as compared to the case of growing the HSG
7
on both inner and outer walls of the storage node
6
as in FIG.
1
A.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a method of forming a storage node of a capacitor that prevents HSG bridging while improving capacitance by growing HSG on inner and outer walls of the storage node of the capacitor.
To achieve the above object, there is provided a method of preventing HSG bridging using a nitride-spacer according to the present invention, which includes the steps of: forming a storage node of a capacitor, comprising: forming an first insulation film over a substrate; forming a trench in the first insulation film to expose an electrical contact structure; forming a second insulation film along sidewalls of the trench; forming an amorphous silicon film in the trench; removing the second insulation film so that sidewalls of the amorphous silicon film are separated from sidewalls of the trench; and growing HSG on exposed surfaces of the amorphous silicon film.
To form the second insulation film, dry etching is carried out. The second insulation film is made to have a thickness of 200~500 Å. Also, the amorphous silicon film is planarized using a planarization film, e.g., SOG (silicon oxide glass) or PSG (phosphosilicate glass).
By this method, the first insulation film serves as a barrier between storage nodes, and the second insulation film provides a space for growing HSG on the outer walls of the storage node, thus growing HSG on both inner and outer walls of the storage node without bridging.


REFERENCES:
patent: 5989952 (1999-11-01), Jen et al.
patent: 6037219 (2000-03-01), Lin et al.
patent: 6255687 (2001-07-01), Figura et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of forming a storage node of a capacitor that... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of forming a storage node of a capacitor that..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of forming a storage node of a capacitor that... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2885689

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.