Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate
Reexamination Certificate
1998-12-17
2001-03-27
Niebling, John F. (Department: 2812)
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
Having insulated gate
C438S306000, C438S761000
Reexamination Certificate
active
06207516
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method of fabricating gate oxide layer with different thicknesses, and more particularly to a method of fabricating gate oxide layer with different thicknesses, which can provide improved protection against electrostatic discharge (ESD).
2. Description of the Related Art
As the size of semiconductor technology becomes smaller and smaller, the length of the channel becomes shorter. When the length of the channel becomes small, the across-electric field in the channel increases if the voltage applied on the gate doesn't change. The energy of the electrons in the channel increases because the electric field increases and the energy of the electrons is higher, especially adjacent to the channel and the drain region. The energy of the electrons is higher than the other electrons that are in thermal equilibrium, so the electrons are called hot electrons. The phenomenon is called the hot electron effect and it is also called the hot carrier effect. The hot electron effect affects the operation of the MOS transistor because the channel length has shortened.
One method of solving the hot electron effect of short channel length, for example, is to decrease the operation voltage of MOS transistor. Another method used is to construct a lightly doped drain (LDD). In the lightly doped drain method a doped region is formed near the original MOS source/drain region, adjacent to the channel, and the dosage of the LDD is lighter than the original source/drain region.
The capacity of electrostatic-discharge protection is affected by using the LDD structure. Static voltage can be produced by walking across a room or by removing an integrated circuit from its plastic package. If such a high voltage is accidentally applied to the pins of an IC package, its discharge can cause breakdown of the gate oxide of the devices to which it is applied. The breakdown event may cause sufficient damage to produce immediate destruction of the devices, or it may weaken the oxide enough that it will fail early in the operating life of the device.
Therefore, all pins of MOS integrated circuits must be provided with protection circuits to prevent such voltages from damaging the MOS gates. These protective circuits, normally placed between the input and output pads on a chip and the transistor gates to which the pads are connected, are designed to begin conducting or to undergo breakdown, thereby providing an electrical path to a ground. Since the breakdown mechanism is designed to be nondestructive, the circuits provide a normally open path that closes only when a high voltage appears at the input or output terminals.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide a method of forming a thicker oxide layer near the MOS gate and the drain region. This reduces the intensity of the electric field in the channel and also decreases the hot electron effect. The undesirable LDD process is then unnecessary and protection against electrostatic discharge can be improved.
To achieve these objects and advantages, and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention is directed towards a method of fabricating a gate oxide layer with different thickness. A substrate having a gate oxide layer and a gate is provided and a portion of the gate oxide layer is removed. A first thermal oxide layer is formed to cover the surface of the substrate and the gate and a masking layer is formed to cover the first thermal oxide layer. The masking layer is defined and a portion of the thermal oxide layer is removed to expose a portion of the surface of the gate and the substrate. A first implantation is performed to form a drain region at one side of the gate. A second thermal oxide layer is then formed to cover the exposing substrate and the exposing gate. The masking layer is removed and the second thermal oxide layer and the first thermal oxide layer are etched back to expose the surface of the gate so the second thermal oxide layer becomes a spacer structure. A second implantation is performed to form a source region at the other side of the gate. The concentration of dopant ions in the drain region adjacent to the gate is lighter.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
REFERENCES:
patent: 4682404 (1987-07-01), Miller et al.
patent: 5681768 (1997-10-01), Smayling et al.
patent: 5923982 (1999-07-01), Kadosh et al.
patent: 5970347 (1999-10-01), Gardner et al.
Jones Josetta
Niebling John F.
Thomas Kayden Horstemeyer & Risley
United Microelectronics Corp.
LandOfFree
Method of fabricating gate oxide layer with different thickness does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of fabricating gate oxide layer with different thickness, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of fabricating gate oxide layer with different thickness will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2486502