Method of and apparatus for substrate pre-treatment

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S312000, C427S100000

Reexamination Certificate

active

06696363

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to an apparatus and a method for patterning a precursor via a pre-conversion step.
BACKGROUND OF THE INVENTION
The semiconductor and packaging industries, among others, utilize processes to form thin metal and metal oxide films in their products. Conventional processes for forming metal and metal oxide films involve costly equipment and are time consuming. Examples of such processes include evaporation, sputter deposition, thermal oxidation and chemical vapor deposition. Evaporation is a process whereby a material to be deposited is heated near the substrate on which deposition is desired. Normally conducted under vacuum conditions, the material to be deposited volatilizes and subsequently condenses on the substrate, resulting in a blanket, or unpatterned, film of the desired material on the substrate. This method has several disadvantages, including the requirement to heat the desired film material to high temperatures and the need for high vacuum conditions. Unless a screen or shadow is employed during evaporation, an unpatterned, blanket film results from this process.
Sputtering is a technique similar to evaporation, in which the process of transferring the material for deposition into the vapor phase is assisted by bombarding that material with incident atoms of sufficient kinetic energy such that particles of the material are dislodged into the vapor phase and subsequently condense onto the substrate. Sputtering suffers from the same disadvantages as evaporation and, additionally, requires equipment and consumables capable of generating incident particles of sufficient kinetic energy to dislodge particles of the deposition material.
CVD is similar to evaporation and sputtering but further requires that the particles being deposited onto the substrate undergo a chemical reaction during the deposition process in order to form a film on the substrate. While the requirement for a chemical reaction distinguishes CVD from evaporation and sputtering, the CVD method still demands the use of sophisticated equipment and extreme conditions of temperature and pressure during film deposition.
Thermal oxidation also employs extreme conditions of temperature and an oxygen atmosphere. In this technique, a blanket layer of an oxidized film on a substrate is produced by oxidizing an unoxidized layer which had previously been deposited on the substrate.
Several existing film deposition methods may be undertaken under conditions of ambient temperature and pressure, including sol-gel and other spin-on methods. In these methods, a solution containing precursor particles that may be subsequently converted to the desired film composition is applied to the substrate. The application of this solution may be accomplished through spin-coating or spin-casting, where the substrate is rotated around an axis while the solution is dropped onto the middle of the substrate. After such application, the coated substrate is subjected to high temperatures which convert the precursor film into a film of the desired material. Thus, these methods do not allow for direct imaging to form patterns of the amorphous film. Instead, they result in blanket, unpatterned films of the desired material. These methods have less stringent equipment requirements than the vapor-phase methods, but still require the application of extreme temperatures to effect conversion of the deposited film to the desired material.
In one method of patterning blanket films, the blanket film is coated (conventionally by spin coating or other solution-based coating method; or by application of a photosensitive dry film) with a photosensitive coating. This photosensitive layer is selectively exposed to light of a specific wavelength through a mask. The remaining material may also then be used as a pattern transfer medium, or mask, to an etching medium that patterns the film of the desired material or as a circuit or dielectric layer. If used as a mask or etching, then this etch step, the remaining (formerly photosensitive) material is removed, and any by-products generated during the etching process are cleaned away if necessary.
In another method of forming patterned films on a substrate, a photosensitive material may be patterned as described above. Following patterning, a conformal blanket of the desired material may be deposited on top of the patterned (formerly photosensitive) material, and then the substrate with the patterned material and the blanket film of the desired material may be exposed to a treatment that attacks the formerly photosensitive material. This treatment removes the remaining formerly photosensitive material and with it portions of the blanket film of desired material on top. In this fashion a patterned film of the desired material results; no etching step is necessary in this “liftoff” process. It is also known that the “liftoff” method has severe limitations with regard to the resolution (minimum size) that may be determined by the pattern of the desired material.
In yet another method of forming patterned films, a blanket film of desired material may be deposited, e.g., by one of the methods described above, onto a substrate that has previously been patterned, e.g., by an etching process such as the one described previously. The blanket film is deposited in such a way that its thickness fills in and completely covers the existing pattern in the substrate. A portion of the blanket film is then isotropically removed until the remaining desired material and the top of the previously patterned substrate sit at the same height. Thus, the desired material exists in a pattern embedded in the previously patterned substrate. The isotropic removal of the desired material may be accomplished via an etching process; commonly in the case of the formation of semiconductor devices it is envisioned that this removal is effected through a process known as chemical mechanical planarization (“CMP”). This involves the use of a slurry of particles in conjunction with a chemical agent to remove substantial quantities of the desired material through a combination of chemical and mechanical action, leaving behind the desired material in the desired places embedded in the patterned substrate.
While some of these methods are more equipment-intensive than others and differ in the use of either solution- or vapor-phase methods, such conventional processes for forming metal and metal oxide films is not optimal because, for example, they each require costly equipment, are time consuming, require the use of high temperatures to achieve the desired result, and result in blanket, unpatterned films where, if patterning is needed, further patterning steps are required. Many of these methods suffer the additional disadvantage of, in many cases, forming polycrystalline films which may not be suitable for a variety of applications. A desirable alternative to these methods would be the use of a precursor material that may be applied to a substrate and selectively imaged and patterned to form an amorphous film without the need for undesirable intermediate steps.
One use of thin films in semiconductor processing is for the formation of thin top-surface imaging (hereafter “TSI”) layers, typically atop organic layers that have already been applied to the substrate. In this instance, the organic layer need not be photoactive, since the thin film to be deposited will be subsequently patterned using conventional methods. The use of these thin films for TSI confers several process advantages, including resistance to plasma etching not afforded by the use of photoresist masks, and the increased resolution of the lithographic process afforded by a very thin film. Typical thin films for TSI include metal and silicon nitride and oxide films, and a great deal of research has also been conducted on a process known as silylation. This process involves the vapor deposition of a thin film of a silicon-containing species on top of a previously deposited organic layer. This thin film of the silicon species can t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of and apparatus for substrate pre-treatment does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of and apparatus for substrate pre-treatment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of and apparatus for substrate pre-treatment will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3283144

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.