Radiation imagery chemistry: process – composition – or product th – Including control feature responsive to a test or measurement
Reexamination Certificate
1999-10-13
2001-07-31
Young, Christopher G. (Department: 1756)
Radiation imagery chemistry: process, composition, or product th
Including control feature responsive to a test or measurement
C382S144000, C356S237600
Reexamination Certificate
active
06268093
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to techniques for inspecting reticles that are used in fabricating microelectronic devices through a microphotolithographic process. Particularly, the present invention relates to a method and an apparatus for detecting variations in line width and other defects that would be printed on the wafer using such reticles by emulating the operation of a specific photolithography tool in which this reticle is to be used. The invention is embodied in a method and an apparatus that can readily be used for inspecting reticles in the industrial environment.
2. Description of the Background Art
Modern microelectronic devices are commonly produced using a photolithographic process. In this process, a semiconductor wafer is first coated with a layer of photoresist. This photoresist layer is then exposed to illuminating light using a photomask (for simplicity, the terms photomask, mask, and reticle will be used here interchangeably) and subsequently developed. After the development, non-exposed photoresist is removed, and the exposed photoresist produces the image of the mask on the wafer. Thereafter, the uppermost layer of the wafer is etched. Thereafter, the remaining photoresist is stripped. For multilayer wafers, the above procedure is then repeated to produce subsequent patterned layers.
Increasing the number of components in microelectronic circuits produced using the above photolithographic process requires the use of very high resolution images in photoresist exposure. The major limitations on the resolution of the image that can be projected on the photoresist are created by the illuminating light diffraction effects on the features of the mask and the limitations on the quality of the mask itself. The diffraction effects become important when the wavelength of the electromagnetic radiation used in the exposure of the photoresist becomes significant with respect to the size of the features of the mask being reproduced during the exposure. Increasing the resolution and decreasing the size of the reproducible features of the projected images may be achieved by decreasing the wavelength of the light that is being used in the photoresist exposure. For this reason, it is advantageous to use the electromagnetic radiation in the ultraviolet region of the spectrum, which corresponds to the shorter wavelength. Particularly, ultraviolet i-line (365 nm) and deep UV (248 nm) wavelengths have been used.
Another method for increasing the resolution of the image is the use of RET (Resolution Enhancement Techniques) which include: off axis illumination, OPC (Optical Proximity Correction) reticles, and PSM (Phase Shift Mask) reticles.
Looking more closely at the OPC method, the layout of the design of the mask is altered in such a way that the mask produces a higher resolution image on the photoresist. The optical proximity corrections introduced into the mask design compensate for the optical proximity effects caused by the limited resolution of the optical exposure system used in the photolithographic process. An optical stepper is one example of the optical exposure system. Other types of optical exposure systems include optical scanners and step-and-scan exposure systems. Most common optical proximity effects include corner rounding, line end shortening, and line width non-linearity. Processing of the mask including mask etching also contributes to the proximity effects. To correct for the proximity effects, such as corner rounding, reentrant and outside serifs are added to the mask design, and to correct for the line width variations, so called sub-resolution features are used.
It should be appreciated by those skilled in the art that to produce an operational microelectronic circuit, a mask must be as defect-free as possible, preferably completely defect-free. Therefore, mask inspection tools are needed to detect various defects in the masks that can potentially reduce the microelectronic circuit fabrication yields. Smaller feature sizes of the masks used in the microphotolithographic process, as well as the use of the phase shift and OPC masks, require more sophisticated tools for mask inspection. For instance, the inspection of the phase shift masks requires not only finding “conventional” defects, such as particles, but also detecting errors in the thickness of various regions of the mask. Numerous systems for mask inspection have been developed in response to the growing demands of the electronic industry.
Early mask inspection tools used actual photoresist exposure to study the quality of the mask. According to this method, the mask is placed on the optical exposure system and used to actually expose the photoresist. The image obtained in this way is then studied to determine if the mask performs to the specifications. Because this method is expensive, time-consuming, and often inaccurate, it is uneconomical and inefficient.
Certain kinds of mask defects (called “surface” defects, for example, a particle on the surface of a mask) can be detected by inspecting the mask using the image of the mask produced by the light transmitted through the mask and the light reflected by one face of the mask. The mask inspection tool that uses this method acquires both images and analyzes them. The results of the analysis of the two images yield the information on the condition of the mask. The image analysis may use die-to-die comparison, die-to-database comparison, or reflected image to transmitted image comparison. In the die-to-die comparison method, the acquired images of a die of the mask are compared to the images of another die from the same mask. In the die-to-database method, the acquired images are compared to images that are simulated using the design specifications.
Such an inspection system can detect defects that may or may not print on the photoresist during the actual photolithographic process. The major drawback of this method is that it studies the physical structure of the mask independently of the optical image actually produced by the mask on the wafer. For instance, variations in the line width of the image that the mask produces frequently are higher than the corresponding variation in the line width of the mask itself. This phenomenon is called MEEF (Mask Error Enhancement Factor). Another example is PSM, in which there is no visible relation between phase error and the printed image. It is desirable, therefore, to relate the physical structure of the mask to the actual image that the mask creates on the photoresist, and to study directly the image that the mask actually produces.
In order to facilitate the evaluation of the mask performance during the mask development stage, IBM has recently developed a microscope called the Aerial Image Measurement System (AIMS™) that uses an aerial imaging method for mask evaluation. The Zeiss MSM100, a mask development tool, implementing AIMS™ technology, is available commercially from Carl Zeiss, GmbH of Germany. The MSM100 system can be used to evaluate the printability properties of newly developed masks.
An aerial imaging method is described in European Patent Application No. 0628806. According to this method, the inspection system simulates an optical exposure system that is used to expose the photoresist during semiconductor device fabrication. The optical system of the mask inspection device uses a set of the exposure conditions, that are used in the actual microphotolithographic process to create an image that would be produced on the photoresist during actual device fabrication. In particular, the system matches the wavelength, the partial coherence of the exposure light, illumination aperture and the imaging numerical aperture NA of the optical exposure system. The created aerial image is magnified and detected using a CCD camera that is sensitive to ultraviolet radiation.
In addition to evaluation of the mask design, the use of the aerial imaging method permits the detection of the mask defects that would print during the actual microphotolithographic pro
Elyasaf Emanuel
Eran Yair
Karpol Avner
Kenan Boaz
Tirosh Ehud
Applied Materials Inc.
Bach Joseph
Sughrue Mion Zinn Macpeak & Seas
Young Christopher G.
LandOfFree
Method for reticle inspection using aerial imaging does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for reticle inspection using aerial imaging, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for reticle inspection using aerial imaging will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2478406