Method for fabricating thin film transistor array substrate...

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – On insulating substrate or layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S030000, C438S158000, C438S642000, C257S052000, C257S079000, C349S042000

Reexamination Certificate

active

06586286

ABSTRACT:

BACKGROUND OF THE INVENTION
(a) Field of the Invention
The present invention relates to a thin film transistor array (TFT) substrate for a liquid crystal display and a method for fabricating the same, and more particularly, to a method for fabricating a TFT array substrate of good performance in processing steps.
(b) Description of the Related Art
Generally, a liquid crystal display (LCD) is formed with two glass substrates, and a liquid crystal layer sandwiched between the substrates.
One of the substrates has a common electrode, a color filter and a black matrix, and the other substrate has pixel electrodes and thin film transistors (TFTs). The former substrate is usually called the “color filter substrate,” and the latter substrate is usually called the “TFT array substrate.”
The TFT array substrate is fabricated by forming a plurality of thin films on a glass substrate, and performing photolithography with respect to the thin films. In photolithography, many masks should be used for uniformly etching the thin films, and this involves complicated processing steps and increased production cost. Therefore, the number of masks becomes a critical factor in the fabrication efficiency of the TFT array substrate.
Furthermore, contact windows tend to be over-etched during the TFT formation, causing contact failure. Thus, it is required that stable and rigid contact between the desired electrodes should be ensured in the device fabrication.
On the other hand, the black matrix provided at the color filter substrate should be formed with a certain width considering the alignment margin for the color filter substrate joining the TFT array substrate. However, the larger black matrix reduces the aperture ratio. Therefore, the opening ratio of the black matrix should be also considered in fabricating the TFT array substrate.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a TFT array substrate for a liquid crystal display of good performance, and a method for fabricating the same with a reduced number of masks.
It is another object of the present invention to provide a method for fabricating a TFT array substrate that ensures suitable contacts between the electrode components.
It is still another object of the present invention to provide a method for fabricating a TFT array substrate with a suitable opening ratio.
These and other objects may be achieved by a TFT array substrate including a gate line assembly with gate lines proceeding in the horizontal direction, gate electrodes branched from the gate lines, and gate pads connected to end portions of the gate lines to receive scanning signals from the outside and transmit them to the gate lines. The gate line assembly may be formed with a single, double or triple layered structure. When the gate line assembly is formed with a double or triple layered structure, one layer is formed with a low resistance material while the other layer is formed with a material having good contact characteristics.
The gate line assembly is overlaid sequentially with a gate insulating layer, semiconductor patterns, and ohmic contact patterns.
A data line assembly is formed on the ohmic contact patterns with data lines proceeding in the vertical direction, data pads connected to end portions of the data lines to receive picture signals from the outside, and source electrodes branched from the data lines. The data line assembly further includes drain electrodes for the TFTs, and conductive patterns for the storage capacitors. The drain electrode is positioned opposite to the source electrode with respect to the gate electrode while being separated from the source electrode. The conductive pattern is positioned above the gate line while overlapping the same. The conductive pattern is connected to a pixel electrode to form a storage capacitor. However, in case the overlapping of the pixel electrode and the gate line can give a sufficient amount of storage capacity, the conductive pattern may be omitted. The data line assembly may have a single, double or triple layered structure.
The semiconductor patterns have a shape similar to that of the data line assembly and the underlying ohmic contact patterns. The semiconductor layer extends to the peripheral portion of the substrate while covering the latter.
A passivation layer covers the data line, the data pad, the source electrode, the drain electrode, the semiconductor pattern, and the overlapping portions between the gate line and the data line.
Contact windows are formed at the passivation layer while exposing the drain electrode and the data pad. The contact window exposing the drain electrode may be extended toward the pixel area such that it can expose the borderline of the drain electrode completely. Another contact window is formed at the passivation layer while passing through the semiconductor pattern and the gate insulating layer to expose the gate pad to the outside.
The pixel electrode is formed on the gate insulating layer at the pixel area defined by the neighboring gate and data lines. The pixel electrode is electro-physically connected to the drain electrode through the contact window such that it receives picture signals from the TFT while making the required electrical field in association with a common electrode. The pixel electrode is extended over the conductive pattern, and electro-physically connected to the latter such that it serves as a storage capacitor together with the conductive pattern and the gate line.
A subsidiary gate pad and a subsidiary data pad are formed on the gate pad and the data pad, respectively. The subsidiary gate and data pads are formed together with the pixel electrode with the same material, and contact the gate and data pads, respectively.
An opening portion may be formed between the pixel electrode and the data line to prevent a possible short circuit thereof.
According to one aspect of the present invention, the steps of fabricating the TFT array substrate may be performed as follows.
A gate line assembly is first formed on a substrate by using a first mask. Then a gate insulating layer, a semiconductor layer, a contact layer, and first and second metal data line layers are deposited onto the substrate with the gate line assembly in a sequential manner. A data line assembly with a predetermined pattern is formed through etching the first and second metal data line layers by using a second mask. The contact layer is etched through the pattern of the data line assembly such that the contact layer has the same pattern as the data line assembly.
A passivation layer is then deposited onto the structured substrate such that the passivation layer covers the semiconductor layer and the data line assembly. A photoresist film is coated onto the passivation layer, and exposed to light by using a third mask. The photoresist film is then developed to thereby form a photoresist pattern partially differentiated in thickness.
A semiconductor pattern is formed by etching the passivation layer and the underlying semiconductor layer at the pixel area through the photoresist pattern. First and second contact windows are formed by etching the passivation layer and the underlying second layers of the drain electrode and the data pad. The third contact window is formed by etching the passivation layer and the underlying semiconductor layer and gate insulating layer, and the second layer of the gate pad.
After the photoresist pattern is removed, a pixel electrode is formed by using a fourth mask such that the pixel electrode is connected to the drain electrode through the first contact window.
The second metal gate or data line layer may be formed with aluminum or aluminum alloy, and the first layer with chrome, molybdenum, or molybdenum alloy. Subsidiary gate and data pads may be formed during the step of forming the pixel electrode such that they are connected to the first layers of the gate and data pads through the second and third contact windows. The pixel electrode as well as the subsidiary gate and data pads may be formed with indium tin oxide or i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for fabricating thin film transistor array substrate... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for fabricating thin film transistor array substrate..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating thin film transistor array substrate... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3025821

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.