Method for fabricating nitride semiconductor, method for...

Active solid-state devices (e.g. – transistors – solid-state diode – Incoherent light emitter structure – With heterojunction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S009000, C257S011000, C257S012000, C257S015000, C257S096000, C257S097000, C257S101000, C257S103000

Reexamination Certificate

active

06586774

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method for fabricating a nitride semiconductor in which the density of a p-type dopant is positively increased, a method for fabricating a nitride semiconductor device, and a nitride semiconductor device fabricated by this method.
Prior art techniques of doping a nitride semiconductor device with a p-type dopant, in particular, magnesium (Mg) will be described.
In the first prior art (Japanese Journal of Applied Physics, 38, L1012, 1999), a superlattice (SL) layer having a cycle of 36 nm is disclosed for use as a p-type cladding layer paired with an n-type cladding layer to sandwich an active layer in the direction vertical to a substrate and confine light generated from the active layer. Each cycle of the superlattice layer is composed of an aluminum gallium nitride (Al
0.15
Ga
0.85
N) layer having a thickness of 24 nm and a gallium nitride (GaN) layer having a thickness of about 12 nm, for example. In this disclosure, the cycle of the superlattice layer is in the range of 9 nm to 100 nm.
Doping of the p-type cladding layer with magnesium (Mg) is performed uniformly over the entire superlattice layer. There is another disclosure reporting doping of either the AlGaN layers or the GaN layers. In either case, doping is uniform in each layer of the AlGaN layers and/or the GaN layers. This p-type cladding layer is formed on a substrate in a following manner. That is, using decompressed metal-organic vapor phase epitaxy (MOVPE) under a growth pressure of 300 Torr (1 Torr=133.322 Pa), a buffer layer made of aluminum nitride (AlN) is grown on a sapphire substrate of which the principal plane is the C plane at a substrate temperature of 400°C., and subsequently an undoped gallium nitride (GaN) layer having a thickness of 1 &mgr;m is grown on the buffer layer at a raised temperature. The substrate temperature is then raised to 1010° C., and the superlattice layer is grown.
By adopting the above method, strain occurs between the AlGaN layer and the GaN layer, causing generation of an internal electric field. This makes the acceptor level of Mg shallow and thus improves the activation yield of the acceptor. Therefore, the p-type carrier density (hole density) increases, and this advantageously reduces the threshold current of the laser device.
In the second prior art (Japanese Laid-Open Patent Publication No. 8-97471), disclosed is a first contact layer made of highly doped p-type GaN that is in contact with an electrode made of nickel (Ni). The first contact layer has a thickness of 50 nm and a Mg density in the range of 1×10
20
cm
−3
to 1×10
21
cm
−3
. This prior art discusses that with this construction, the contact resistance can be reduced, and also the operating voltage of the device can be lowered by attaining a high carrier density.
In the second prior art, if the first contact layer is doped with Mg at an excessively high density, the hole density contrarily becomes low. To overcome this problem, a second contact layer made of p-type GaN having a Mg density lower than the first contact layer is formed on the surface of the first contact layer opposite to the electrode. According to this prior art, the second contact layer is desirably doped with Mg at a density in the range of 1×10
19
cm
−3
to 5×10
20
cm
−3
for the purpose of increasing the hole density.
The prior art techniques described above have the following problems. In the first prior art, the superlattice structure of the p-type cladding layer is yet insufficient in attaining low resistance. In the second prior art, although the upper portion of the p-type contact layer is doped with the p-type dopant at a high density, this contrarily decreases the hole density.
In addition, the conventional doping techniques find difficulty in providing a steep impurity profile. In particular, when a p-type cap layer is formed on an active layer, for example, an especially steep impurity profile is required for suppression of diffusion of a p-type dopant to the active layer.
SUMMARY OF THE INVENTION
An object of the present invention is attaining low resistance of a nitride semiconductor by increasing the p-type impurity density of the nitride semiconductor without increasing the doping amount and also providing a steep p-type impurity profile.
To attain the above object, according to the present invention, a first semiconductor layer made of a group III nitride is formed in contact with a second semiconductor layer made of a group III nitride different in composition from that of the first semiconductor layer, so that the density of a p-type dopant locally increases in an area near the heterojunction interface between the first and second semiconductor layers, that is, so that segregation of the p-type dopant occurs.
The method for fabricating a nitride semiconductor of the present invention includes the steps of: (1) growing a first semiconductor layer made of a first group III nitride over a substrate by supplying a first group III source and a group V source containing nitrogen; and (2) growing a second semiconductor layer made of a second group III nitride on the first semiconductor layer by supplying a second group III source and a group V source containing nitrogen, wherein at least one of the steps (1) and (2) includes the step of supplying a p-type dopant over the substrate, and an area near the interface between the first semiconductor layer and the second semiconductor layer is grown so that the density of the p-type dopant locally increases.
According to the method for fabricating a nitride semiconductor of the present invention, by forming a layered structure of the first semiconductor layer and the second semiconductor layer, the density of the p-type dopant in the layered structure increases compared with the conventional case. This makes it possible to attain low resistance, and also attain a steep p-type impurity profile in which only the layered structure has a high impurity density.
In the method for fabricating a nitride semiconductor of the present invention, preferably, the first group III source contains gallium, and the second group III source contains aluminum or indium. This further ensures increase in the density of the p-type dopant in the layered structure compared with the conventional case.
In the method for fabricating a nitride semiconductor of the present invention, preferably, the first group III source mainly contains gallium, and the second group III source contains gallium and either one of aluminum and indium. This further ensures increase in the density of the p-type dopant in the layered structure compared with the conventional case.
In the method for fabricating a nitride semiconductor of the present invention, when both the step (1) and the step (2) include the step of supplying a p-type dopant, the supply amount of the p-type dopant is preferably roughly the same in the two steps. Even in this uniform doping with the p-type dopant, it is possible to locally increase the density of the p-type dopant in an area near the interface between the first and second semiconductor layers.
In the method for fabricating a nitride semiconductor of the present invention, the supply amount of the p-type dopant is preferably different between the step (1) and the step (2). Even in this selective doping with the p-type dopant, it is possible to locally increase the density of the p-type dopant in an area near the interface between the first and second semiconductor layers.
In the method for fabricating a nitride semiconductor of the present invention, when the p-type dopant is supplied during the growth of the first semiconductor layer, the supply of the p-type dopant is preferably started ahead of the growth of the first semiconductor layer. Likewise, when the p-type dopant is supplied during the growth of the second semiconductor layer, the supply of the p-type dopant is preferably started ahead of the growth of the second semiconductor layer. By this advanced supply of the p-type dop

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for fabricating nitride semiconductor, method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for fabricating nitride semiconductor, method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating nitride semiconductor, method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3005806

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.