Method for etching laminated assembly including polyimide layer

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Forming nonplanar surface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S322000, C430S330000, C430S273100, C430S277100, C428S209000, C428S473500, C428S458000, C216S047000, C216S049000

Reexamination Certificate

active

06783921

ABSTRACT:

This application is based on applications Nos. 2001-197029 and 2001-331280 filed in Japan, the contents of which are incorporated hereinto by reference.
BACKGROUND OF THE INVENTION
The present invention relates to an etching method for wet etching a laminated assembly having a polyimide layer.
Multilayer structures have found a great variety of applications, the structure comprising laminations of an insulative resin film and a metal layer imparting rigidity and defining a conductive circuit. Of the resin materials for forming the film, polyimide resins are widely used because of their superior heat resistance, dimensional stability, resistance to agents, electrical properties and mechanical properties. For instance, the polyimide resin is used in flexible printed circuits, film carriers employed for TAB (Tape Automated Bonding) or COF (Chip on film) mounting, and flexures with wiring for use in magnetic head suspensions and the like.
A method for fabricating the laminated assembly comprising the non-thermoplastic polyimide film and the metal layer includes (a) one wherein a metallic circuit layer is formed on the aforesaid resin film by spattering, electrolytic plating or the like; (b) one wherein a liquid-like non-thermoplastic polyimide (or polyamic acid as the precursor thereof) is applied to the metal layer by coating or casting; and (c) one wherein laminations of the resin film and the metal foil bonded together via an adhesive layer is processed.
The above methods each have an advantage and disadvantage and are selectively adopted according to applications. The method (a) has advantages of enjoying a great number of applicable non-thermoplastic polyimides and accomplishing an excellent fine patterning characteristic in circuit formation but suffers a disadvantage of low adhesion between the non-thermoplastic polyimide layer and the metal layer. The method (b) assures a good adhesion between the non-thermoplastic polyimide layer and the metal layer but limits the applicable non-thermoplastic polyimide to those having low thermal expansibilities (expansibilities close to that of the metal). On the other hand, the method (c) has advantages of good adhesion between the non-thermoplastic polyimide layer and the metal layer and a relatively large number of applicable non-thermoplastic polyimides. However, the method uses an adhesive material having lower heat resistance and electrical properties than the non-thermoplastic polyimide, so that the resultant products suffer poor characteristics as well as low resistance to agents and heat.
Conventionally, an epoxy-based or acrylic adhesive is widely used for forming the adhesive layer which is essential in the method (c). More recently, however, the use of an adhesive layer of thermoplastic polyimide is increasing as an approach to enhance the above advantages and to improve the poor characteristics attributable to the adhesive layer.
In the laminated assembly comprising the non-thermoplastic polyimide layer and metal layer, the formation of hole in the polyimide layer is generally done by laser processing, plasma processing (dry etching), wet etching or the like. Among these, the plasma processing provides a smoothly etched surface, as shown in FIG.
4
. However, this method requires a special equipment and hence, is not so suitable for general purpose use in terms of economy. Because of the isotropic nature, the wet etching process has a drawback of etching away a portion under the metal mask layer (see FIG.
1
). However, this method is widely used because the polyimide layer can be etched quickly and economically. Hence, there have been proposed a great variety of etching solutions comprising an alkali metal hydroxide, alcohol, phenol, amine compound, amide compound, oxyalkylamine, hydrazine or the like (see, for example, Japanese Unexamined Patent Publication No. 10(1998)-97081).
Unfortunately, where the conventional etching solution is applied to the laminated assembly including the non-thermoplastic polyimide layer and the metal layer bonded together via the adhesive layer of thermoplastic polyimide, a favorably etched feature cannot be obtained because the thermoplastic polyimide is etched at much lower etching rate than the non-thermoplastic polyimide so that great pits and projections are produced on a side of an etched portion, as shown in FIG.
3
. It is noted that the figure shows, in vertical section, one typical side of an etched laminated assembly, wherein P
1
indicates the non-thermoplastic polyimide layer; P
2
indicates the adhesive layer of thermoplastic polyimide; and K indicates the metal layer.
As to the etching of the polyimide layer, an attempt has been made to simplify the complicated etching process by employing a dry-film resist layer as a resist mask instead of a metal mask. The metal mask means a resist mask for polyimide etching, which is produced by etching the metal layer or by depositing a metal layer on the laminated assembly by sputtering or the like to form a mask thereon. Where the metal mask is produced by etching the metal layer, the polyimide etching process includes the steps of producing the metal mask and then etching the polyimide layer, the metal mask produced by exposing a resist to light, developing the resist, etching a metal layer and removing the resist.
If, on the other hand, the dry film resist can be used in the polyimide etching process, the process is simplified because the steps of exposing and developing the resist are followed by etching the polyimide layer. Unfortunately, if the dry-film resist is formed according to the conventional conditions, there is a drawback that the adhesion between the dry film and the polyimide layer is decreased during the etching process, resulting in the separation of the dry film from the polyimide layer.
In view of the foregoing, it is an object of the present invention to provide a wet etching method which accomplishes a smoothly etched feature of the laminated assembly comprising the non-thermoplastic polyimide layer and the metal layer bonded together via the adhesive of thermoplastic polyimide without producing difference between an etching amount of the thermoplastic polyimide portion and that of the non-thermoplastic polyimide portion, and which assures an etching process free from inter-layer delamination despite the application of the dry-film resist layer to the process.
SUMMARY OF THE INVENTION
The present inventors have made intensive study to achieve the above object, focusing on the compositions of the etching solution to find that the following etchant permits the etching process to proceed without producing difference between an etching amount of the thermoplastic polyimide portion and that of the non-thermoplastic polyimide portion. That is, the etchant contains an alkali metal hydroxide, oxyalkylamine and water and is prepared in a particular manner that the concentrations of the alkali metal hydroxide and water satisfy specific relationships. The inventors have made further investigation based on the finding thereby to achieve the present invention.
According to the invention, a method for etching a laminated assembly is characterized in that a laminated assembly comprising a metal layer and a non-thermoplastic polyimide layer bonded together via thermoplastic polyimide is etched using an etchant at least containing an alkali metal hydroxide, water and oxyalkylamine,
the concentrations of the alkali metal hydroxide (X weight %) and of the water (Y weight %) having relationships represented by coordinate points present within a region (inclusive of boundary lines) defined by the following expressions [1] and [2]:
Y
=(½)
X
(provided that 7≦X≦45)  [1]
Y
=({fraction (5/20)})
X+
17.5 (provided that 7≦X≦45)  [2]
provided that X and Y are defined based on the total weight of the alkali metal hydroxide, water and oxyalkylamine expressed as 100.
FIG. 5
is a graph representing the above relationships of the concentrations of the co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for etching laminated assembly including polyimide layer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for etching laminated assembly including polyimide layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for etching laminated assembly including polyimide layer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3357621

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.