Method and apparatus for selecting targeted components in...

Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C714S027000, C703S016000, C703S017000, C702S116000

Reexamination Certificate

active

06263476

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
A number of related copending United States patent applications commonly owned by the assignee of the present document and incorporated by reference in their entirety into this document are being filed in the United States Patent and Trademark Office on or about Oct. 9, 1998. The list of these applications is as follows: Hewlett Packard Company docket number 10971074-1, entitled “METHOD AND APPARATUS FOR LIMITED ACCESS CIRCUIT TEST”; Hewlett Packard Company docket number 10971075-1, entitled “METHOD AND APPARATUS FOR SELECTING STIMULUS LOCATIONS DURING LIMITED ACCESS CIRCUIT TEST”; Hewlett Packard Company docket number 10971081-1, entitled “METHOD AND APPARATUS FOR CANCELING ERRORS INDUCED BY THE MEASUREMENT SYSTEM DURING CIRCUIT TEST”; Hewlett Packard Company docket number 10982227-1, entitled “METHOD AND APPARATUS FOR SELECTING TEST POINT NODES FOR LIMITED ACCESS CIRCUIT TEST”; Hewlett Packard Company docket number 10982228-1, entitled “METHOD AND APPARATUS FOR CORRECTING FOR DETECTOR INACCURACIES IN LIMITED ACCESS TESTING”; and, Hewlett Packard Company docket number 10971078-1, entitled “METHOD AND APPARATUS FOR BOARD MODEL CORRECTION.”
FIELD OF THE INVENTION
This invention relates generally to circuit board testing. More particularly, this invention relates to the identification of manufacturing defects and faulty components on a circuit board.
BACKGROUND OF THE INVENTION
Generally, a circuit board consists of numerous interconnected components such as semiconductor chips, resistors, capacitors, inductors, etc. After circuit boards have been assembled, but before they can be used or placed into assembled products, they must be tested. Testing verifies that the proper components have been used, that each component performs within test limits, that all required electrical connections have been properly completed, and that all necessary electrical components have been attached to the board in the proper position and with the proper orientation. When a component is not performing within test limits, it is said to be faulty.
A common way to test assembled printed circuit boards is called in-circuit test. In-circuit testing involves probing individual board components through a so-called “bed-of-nails” and verifying their existence and specifications independent of surrounding circuitry. A well known series of circuit board testing machines for in-circuit testing is the Hewlett-Packard Company Model HP-3070 Family of Circuit Board Testers. The HP-3070 Family of board testers are fully described in the HP-3070 Family Operating and Service Manuals available from Hewlett-Packard Company. Other families of circuit board testing machines made by Hewlett-Packard are the HP-3060 and HP-3065 series.
To test each individual board component, in-circuit testing requires access to every node on the circuit board. With through-hole parts, access is directly available at component leads. With surface mount parts, access is provided through vias and test pads that are placed on the circuit board when it is designed. Increases in board density, however, have led to a decrease in the size of vias that has eclipsed the ability of probe technology to contact a smaller target. Vias now are often one hundred times smaller in area than vias used just a few years ago. Furthermore, test pads that are large enough to be probed successfully require a substantial amount of board area that would otherwise be used to place and connect components. Therefore, on many circuit boards it is no longer practical, or desirable, to probe every node on the board.
Accordingly, there is a need in the art for a test technique and apparatus that can test individual circuit board components having tolerances without requiring access to every node on the circuit board. Such a technique should be generalized so that it can be used with many different circuits and tolerance ranges. Furthermore, it is desirable that such a system be implemented on existing in-circuit testing hardware to preserve existing capital and process investments in that hardware.
SUMMARY OF THE INVENTION
In a preferred embodiment, the invention selects targeted components from a larger group of components with inaccessible nodes. By selecting a subset of the larger group of components the complexity of the test problem is reduced. Furthermore, the invention also provides possible stimulus locations for testing the group of selected components. The invention is generally applicable to all kinds of circuits and may be implemented using existing computer and tester hardware.
The invention constructs a topology graph of the larger group of components. Then an inaccessible node is selected. This node is used as the starting point for a recursive traversal of the topology graph. The recursion of the topology graph stops at accessible nodes, and descends at inaccessible nodes. The nodes stopped at are possible stimulus locations. The devices traversed are the selected devices. In this manner, the selected devices are “surrounded” by accessible nodes that may be measured, or have stimulus applied to them.
After being stored, the selected devices are then removed from the topology graph. The process may then be repeated to select another group of targeted components. This can continue until there are no more inaccessible nodes.


REFERENCES:
patent: 5172377 (1992-12-01), Robinson et al.
patent: 5392220 (1995-02-01), Van Den Hamer et al.
patent: 5510704 (1996-04-01), Parker et al.
patent: 5530372 (1996-06-01), Lee et al.
patent: 5786697 (1998-07-01), Khazam et al.
patent: 5808919 (1998-09-01), Preist et al.
patent: 5838583 (1998-11-01), Varadarjan et al.
patent: 5870590 (1999-02-01), Kita et al.
Huang et al. (“Node-Fault Diagnosis and a Design of Testability”, IEEE Transactions on Circuits and Systems, vol. CAS-30, No. 5, May 1983, pp. 257-264).*
S. D. Bedrosian, “On Element Value of Single-Element-Kind Networks”, Ph. D. Dissertation, University of Pennsylvania, Dec. 1961).*
Trick et al. (“Calculation of Parameter Values from Node Voltage Measurements”, IEEE Transactions on Circuits and Systems, vol. CAS-26, No. 7, Jul. 1979, pp. 466-474).*
Yoshio Togawa, Takashi Matsumoto, & Hideki Arai, “The Tf-Equivalence Class Approach to Analog Fault Diagnosis Problems”, IEEE Transactions on Circuits and Systems, vol. CAS-33, No. 10, Oct. 1986, pp. 992-1009.
Jiri Vlach and Kishore Singhal, Computer Methods for Circuit Analysis and Design, Van Nostrand Reinhold Publishing, New York, NY, 1983.
Leon O. Chau & Pen-Min Lin, Computer Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques, Prentis Hall, 1975.
Gary D. Hactel, Robert K. Brayton, and Fred G. Gustavson, “The Sparse Tableu Approach to Network Analysis and Design” IEEE Transactions on Circuit Theory, vol. CT-18, No. 1, Jan. 1971, pp. 101-113.
Kenneth P. Parker, John e. McDermid and Stig Oresjo “Structure and Metrology for an Analog Testability Bus” Proceeding of the IEEE International Test Conference, Baltimore, Maryland, Oct. 1993, pp. 309-322.
Juin-Lang Huang & Kwang-Ting Cheng “Analog Fault Diagnosis for Unpowered Circuit Boards” Proceedings of the IEEE International Test Conference, Washington, DC, Nov. 1997, pp. 640-648.
John McDermid “Limited Access Testing: IEEE 1149.4 Instrumentation & Method”, Proceeding of the IEEE International Test Conference, Oct. 1998, pp. 388-395.
John McDermid, “Limited Access Testing: Ability and Requirements” Proceedings of the Technical Program. NEPCON West '98, Mar. 1998, vol. 2, pp. 736-742.
R. Lui, Testing and Diagnosis of Analog Circuits and Systems, Van Nostrand & Reihold, NY, 1991.
S.D. Bedrosian, “On Element Value Solution of Single-Element-Kind Networks”, Ph. D. Dissertation, University of Pennsylvania, Dec. 1961.
Timothy N. Trick, Wataru Mayeda, and Adel A. Sakla, “Calculation of Parameter Values from Node Voltage Measurements”, IEEE Transactions on Circuits and Systems, vol. CAS-26, No. 7, pp. 466-474, Jul. 1979.
Zheng F. Huang, Chen-Shang Lin & Ruey-Wen Liu, “Node-Fault Diagnosis and a Design of Testabili

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for selecting targeted components in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for selecting targeted components in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for selecting targeted components in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2459120

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.