Method and apparatus for enabling full interactive...

Telephonic communications – Centralized switching system – Call distribution to operator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S032010, C379S035000

Reexamination Certificate

active

06408064

ABSTRACT:

FIELD OF THE INVENTION
The present invention is in the field of computer telephony integrated (CTI) networks and has particular application to methods and apparatus including software for the purpose of third-party participation in agent call activity at agent stations.
BACKGROUND OF THE INVENTION
Telephone call processing and switching systems are, at the time of present patent application, relatively sophisticated, computerized systems, and development and introduction of new systems continues. Much information on the nature of such hardware and software is available in a number of publications accessible to the present inventor and to those will skill in the art in general. For this reason, much minute detail of known systems is not reproduced here, as to do so would obscure the facts of the invention.
One document which provides considerable information on intelligent networks is “ITU-T Recommendation Q.1219, Intelligent Network User's Guide for Capability Set 1”, dated April, 1994.
At the time of filing the present patent application there continues to be remarkable growth in telephone-based information systems (intelligent networks) including Internet based networks. Recently emerging examples are telemarketing operations and technical support operations, among many others, which have grown apace with development and marketing of, for example, sophisticated computer equipment. More traditional are systems for serving customers of such as large insurance organizations. In some cases, organizations develop and maintain their own telephony operations with purchased or leased equipment, and in many other cases, companies are outsourcing such operations to films that specialize in such services.
A large technical support operation may serve as an example of the kind of applications of telephone equipment and functions to which the present invention pertains and applies. Consider such a system having a country-wide matrix of call-in centers, which is more and more a relatively common practice to provide redundancy and decentralization, which are often considered desirable in such operations. Also in such large organizations, business firms have a national, and in many cases a world-wide customer base. Such a system handles a large volume of calls from people seeking technical information on, for example, installation of certain computer-oriented equipment. These calls are handled by a finite number of trained operators distributed over the decentralized matrix of call centers.
In an intelligent network such as described above, incoming calls placed from anywhere in the Publicly Switched Telephone Network (PSTN) arrive at central telephony switches called in the art Service Control Points (SCP). An SCP is generally provided to be relatively close to a defined local area of callers. If the intelligent network is very large comprising many call centers then more than one SCP may be provided. Routing of incoming calls begins at the SCP.
A central router at the SCP typically routes incoming calls to other routers or telephony switches that are deployed throughout the network to provide further routing to call centers or customer information systems (CIS). Additional processors may be provided at the SCP for further computer enhancement. For example, when a call arrives at an SCP, information about the caller may be collected and processed to help determine routing for the call. Then, according to programmed routing rules, the call may be routed to an automatic call distributor (ACD) for further routing to a call center and then on to an available agent. In some networks (known to the inventor) information pertaining to the caller may arrive at an agent station before the call. Routing in an intelligent network may be accomplished on several levels according to many different protocols. It is the processor connected to the telephony switch that provides computer enhancement in an intelligent network.
Incoming calls are routed to an agent trained to handle the call according to protocols established by the company or organization hosting a destination call-center or centers. A large call center may have hundreds of agents logged in to the system and actively taking a variety of calls. As well as calls coming in, there may also be outgoing calls being placed by agents. Therefore, call monitoring capabilities or features are and have been an important tool for a call center manager to have at his or her disposal.
It is well established in the art that most large service organizations hosting call centers have a capability for monitoring telephone calls while an agent is actively communicating with the caller. For example, when calling to inquire about a telephone bill or perhaps an electric bill, a caller may hear a recorded voice prompt informing the caller that the call will be monitored for the purpose of training a new agent, etc. Mostly, this feature is used in the service industry, but is also utilized in other industries where there are legal considerations, or service quality concerns.
In current art, telephone call monitoring is basically limited to a manager or supervisor patching in to the phone call in process and listening to the agent handle the call via another telephone or headset. Typically, this is a transaction requiring the monitoring party to “conference in” in order to participate with an agent/client audio communication. Another more commonly used method for monitoring a telephone transaction is termed “passive monitoring” by those with experience in the art. Passive monitoring is the process of recording an individual transaction and then later playing it back.
A problem with the art in it's current state is that control of the monitoring process is largely limited to listening to the audio transaction and conferring with the agent during the call or after the call has ended. Although it is possible for the monitoring party to break in to the call, most often the call is transferred to the monitoring supervisor for disposition. For example, an agent supervisor may be listening to a call in process wherein there is a disagreement between the customer and the agent that requires intervention. In this instance, the supervisor would have to conference the call and attempt to mediate if immediate intervention were required. This is largely impractical because of the traffic levels that may be in effect over the lines. If there are many supervisors continually conferencing within the call center, a notable rise in network traffic could result. Therefore, most calls needing intervention are either transferred or passively monitored with the agent being consulted after the call creating a possible situation wherein the agent must place an outgoing call back to the customer with a remedy.
Another problem with current call monitoring capability relates to a lack of efficiency of service to the customer. For example, upon entering a current transaction between an agent and client, a monitoring supervisor is “cold” with regards to knowing the history, present particulars concerning the client, and so on. The monitoring party must hear the situation again after it has been once explained by the customer, and in some situations, must obtain other information that may be stored about the caller by making a second request, (after the agent's initial request), to a customer information system (CIS). For this reason, many larger organizations observe a policy of passive monitoring, with active monitoring occurring only on a random basis.
It is also true that in many modern call centers, agents have one or more telephones connected to a central switch, and also a computer platform, such as a PC. The PC may be connected on a local area network (LAN) with a computer-telephony-integration (CTI) processor also connected to the telephony switch, and the LAN may have one or more connected servers, such as a customer-oriented database. In such a system, an agent is typically capable of displaying information about a customer and a customer's situation on the PC displ

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for enabling full interactive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for enabling full interactive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for enabling full interactive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2923948

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.