Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material
Reexamination Certificate
1998-10-03
2001-06-26
Niebling, John F. (Department: 2812)
Semiconductor device manufacturing: process
Coating with electrically or thermally conductive material
C438S682000, C438S687000
Reexamination Certificate
active
06251759
ABSTRACT:
BACKGROUND OF THE DISCLOSURE
1. Field of the Invention
This invention relates to semiconductor wafer processing systems and, more particularly, to a method and apparatus for depositing a material upon a semiconductor wafer using a transition chamber of a multiple chamber semiconductor wafer processing system.
2. Description of the Background Art
Semiconductor wafer processing systems comprised of multiple process chambers are well known in the art. Within these systems, wafers are prepared and processed through the deposition and treatment of multiple layers of conductive and semiconductive materials. Such tools process semiconductor wafers through a plurality of sequential steps to produce integrated circuits. In such tools, a plurality of process chambers and preparatory chambers are arranged in one or more clusters, each served by robotic transfer mechanism. Hence, such tools are commonly referred to as cluster tools. Such cluster tools include the Endura and Centura systems manufactured by Applied Materials, Inc. of Santa Clara, Calif.
The chamber clusters in a cluster tool are typically arranged by function with related functions being in separate clusters. For example, in the Endura cluster tool used for metal deposition, there is a pre-metallization cluster where the wafers are admitted, oriented, degassed, sputter cleaned, subsequently cooled down and removed from the apparatus and at least one metallization cluster of process chambers wherein metal deposition, e.g., copper deposition, is performed. The various chambers of the pre-metallization cluster are serviced by a centrally located robotic transfer mechanism that is enclosed in a buffer chamber. Similarly, the process chambers of the process cluster are serviced by a centrally located robotic mechanism that is enclosed in a transfer chamber. Connecting these two clusters are transition chambers for moving the wafers between the metallization and pre-metallization clusters. These transition chambers are typically utilized for comparatively uncomplicated operations such as precleaning of the wafers prior to processing and cool down of the wafers after processing.
Copper is typically deposited onto wafers in such cluster tools by chemical vapor deposition (“CVD”) in a sequence of process chambers to build up a plurality of layers. A layer of CVD copper may also be used as a seed layer for electroplating or as a seed layer for copper deposited by physical vapor deposition (“PVD”). Generally, copper is deposited using a PVD process when it is desired to deposit copper at low temperatures. All of these copper deposition processes have experienced problems with adhesion of the copper to the substrate.
Several possible solutions to the problem of poor adhesion have been proposed. One of these proposed solutions is to initially deposit a copper layer by physical vapor deposition (“PVD”) (i.e., PVD copper) as a seed layer. PVD deposition is performed using a magnetron sputtering process by placing a copper target above the wafer substrate, providing a gas, such as argon, between the target and the substrate and exciting the gas with a high-voltage DC signal to create ions that strike the target. As the target is bombarded by ions, copper atoms are dislodged and become deposited onto the substrate. The dislodged copper atoms generally have substantial kinetic energy and when they impact the substrate the atoms tend to strongly adhere to the substrate.
While the thin layer of PVD copper provides the necessary adhesion, the PVD process does not provide sufficient step coverage to permit the PVD process to be used for bulk copper deposition. As such, the bulk copper deposition is accomplished by an electroplating or a CVD process. Because PVD deposition and either electroplating or CVD deposition cannot be accomplished in the same chamber, an additional chamber must be added to the cluster tool's metallization cluster. As such, deposition of such a PVD seed layer would require the sacrifice of one of the processing chambers in the process cluster of a cluster tool to make room for the additional PVD chamber. This would adversely affect the throughput of the cluster tool since such a chamber would ordinarily be utilized for a more demanding and/or time-consuming CVD process step.
Furthermore, an additional chamber would require approximately 10 seconds to position a wafer in the chamber and ready the chamber for deposition. As such, the additional chamber would adversely impact throughput of the system. Also, an additional chamber adds substantial cost to a system.
Therefore, there is a need in the art for a modified cluster tool and a method of utilizing such a modified cluster tool that provides for PVD seed layer deposition without replacing a CVD or electroplating chamber in the cluster tool.
SUMMARY OF THE INVENTION
The disadvantages associated with the prior art are overcome by the present invention of a multiple chamber semiconductor wafer processing system having a metallization cluster of metallization chambers and a pre-metallization cluster of pre-process chambers that are interconnected by at least one transition chamber that is adapted to deposit a material upon a wafer. In a specific embodiment of the invention, the transition chamber is a physical vapor deposition (PVD) chamber that is capable of flash coating a wafer with a material such as copper. The wafer having a PVD copper layer (a seed layer) can then be rapidly processed in a chemical vapor deposition (CVD) chamber to deposit a second layer of material such as bulk copper over the seed layer.
The invention also includes a method that moves a wafer from a pre-metallization chamber in a pre-metallization cluster to the transition chamber where the chamber flash coats the semiconductor wafer with a thin layer of material, for example, PVD copper. This flash coating forms an initial step to the bulk deposition of copper by CVD in the metallization chambers of the tool. Once flash coated, the wafer is moved to a metallization chamber in the metallization cluster for CVD processing. By using such a method, the adhesion of the subsequently-deposited bulk CVD copper layer is significantly improved without any sacrifice in the throughput of the cluster tool.
Additionally, the tool can be used to provide an integrated metal deposition solution. Within the present invention, conventional pre-metallization chambers are available for pre-processing a wafer prior to metal deposition, i.e., the wafer is oriented and degassed. One pre-metallization chamber in the pre-metallization cluster is used to preclean the wafer prior to metal deposition. Thereafter, another pre-metallization chamber capable of depositing a barrier layer such as tantalum nitride or titanium nitride is used to form a barrier layer upon the wafer. Once a barrier is deposited, the wafer is placed in the transition chamber and flash coated with a first material, such as a copper seed layer. The flash coated wafer is then moved by the process cluster's wafer transport mechanism to a CVD process chamber for deposition of a layer of a second material such as bulk copper. The wafer is then moved from the metallization chamber to one of the transition chambers. The pre-metallization cluster's wafer transport mechanism moves the wafer from the transition chamber to one of the pre-metallization chambers, if necessary, or a load lock. As such, the invention provides an integrated system for depositing metal, such as copper, with good adhesion upon a semiconductor wafer.
REFERENCES:
patent: 5310410 (1994-05-01), Begin et al.
patent: 5695564 (1997-12-01), Imahashi
patent: 5821168 (1998-10-01), Jain
patent: 6037258 (2000-03-01), Liu et al.
patent: 6046097 (2000-04-01), Hsieh et al.
patent: 0 881 673 A2 (1998-12-01), None
Guo Xin Sheng
Li Shih-Hung
Schmitt John V.
Applied Materials Inc.
Lindsay Jr. Walter L.
Niebling John F.
Thomason Moser & Patterson LLP
LandOfFree
Method and apparatus for depositing material upon a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for depositing material upon a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for depositing material upon a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2505926