Method and apparatus for controlling anti-phase domains in...

Semiconductor device manufacturing: process – Formation of semiconductive active region on any substrate – On insulating substrate or layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S517000

Reexamination Certificate

active

06589856

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to semiconductor structures and devices and to a method for their fabrication, and more specifically to a method and apparatus for controlling anti-phase domains in semiconductor structures, devices, and integrated circuits that include a monocrystalline material layer comprised of semiconductor material, compound semiconductor material, and/or other types of material such as metals and non-metals.
BACKGROUND OF THE INVENTION
Semiconductor devices often include multiple layers of conductive, insulating, and semiconductive layers. Often, the desirable properties of such layers improve with the crystallinity of the layer. For example, the electron mobility and band gap of semiconductive layers improves as the crystallinity of the layer increases. Similarly, the free electron concentration of conductive layers and the electron charge displacement and electron energy recoverability of insulative or dielectric films improves as the crystallinity of these layers increases.
For many years, attempts have been made to grow various monolithic thin films on a foreign substrate such as silicon (Si). To achieve optimal characteristics of the various monolithic layers, however, a monocrystalline film of high crystalline quality is desired. Attempts have been made, for example, to grow various monocrystalline layers on a substrate such as germanium, silicon, and various insulators. These attempts have generally been unsuccessful because lattice mismatches between the host crystal and the grown crystal have caused the resulting layer of monocrystalline material to be of low crystalline quality. An additional reason these attempts have been unsuccessful is that the various layers contain steps which may lead to the formation of anti-phase domains and degrade the performance of the semiconductor structure.
If a large area thin film of high quality monocrystalline material lacking some of the deleterious effects associated with anti-phase domains was available at low cost, a variety of semiconductor devices could advantageously be fabricated in or using that film at a low cost compared to the cost of fabricating such devices beginning with a bulk wafer of semiconductor material or in an epitaxial film of such material on a bulk wafer of semiconductor material. In addition, if a thin film of high quality monocrystalline material lacking some of the deleterious effects associated with the presence of anti-phase domains could be realized beginning with a bulk wafer such as a silicon wafer, an integrated device structure could be achieved that took advantage of the best properties of both the silicon and the high quality monocrystalline material.
Accordingly, a need exists for a semiconductor structure that provides a high quality monocrystalline film or layer over another monocrystalline material and for a process for making such a structure. In other words, there is a need for providing the formation of a monocrystalline substrate that is compliant with a high quality monocrystalline material layer so that true two-dimensional growth can be achieved for the formation of quality semiconductor structures, devices and integrated circuits having grown monocrystalline film having the same crystal orientation as an underlying substrate. This monocrystalline material layer may be comprised of a semiconductor material, a compound semiconductor material, and other types of material such as metals and non-metals.


REFERENCES:
patent: 3670213 (1972-06-01), Nakawaga et al.
patent: 3766370 (1973-10-01), Walther
patent: 3802967 (1974-04-01), Ladany et al.
patent: 3914137 (1975-10-01), Huffman et al.
patent: 3935031 (1976-01-01), Adler
patent: 4006989 (1977-02-01), Andringa
patent: 4084130 (1978-04-01), Holton
patent: 4174422 (1979-11-01), Matthews et al.
patent: 4242595 (1980-12-01), Lehovec
patent: 4284329 (1981-08-01), Smith et al.
patent: 4289920 (1981-09-01), Hovel
patent: 4297656 (1981-10-01), Pan
patent: 4392297 (1983-07-01), Little
patent: 4398342 (1983-08-01), Pitt et al.
patent: 4404265 (1983-09-01), Manasevit
patent: 4424589 (1984-01-01), Thomas et al.
patent: 4439014 (1984-03-01), Stacy et al.
patent: 4442590 (1984-04-01), Stockton et al.
patent: 4452720 (1984-06-01), Harada et al.
patent: 4459325 (1984-07-01), Nozawa et al.
patent: 4482422 (1984-11-01), McGinn et al.
patent: 4482906 (1984-11-01), Hovel et al.
patent: 4484332 (1984-11-01), Hawrylo
patent: 4523211 (1985-06-01), Morimoto et al.
patent: 4594000 (1986-06-01), Falk et al.
patent: 4629821 (1986-12-01), Bronstein-Bonte et al.
patent: 4661176 (1987-04-01), Manasevit
patent: 4667088 (1987-05-01), Kramer et al.
patent: 4667212 (1987-05-01), Nakamura
patent: 4681982 (1987-07-01), Yoshida
patent: 4748485 (1988-05-01), Vasudev
patent: 4756007 (1988-07-01), Qureshi et al.
patent: 4772929 (1988-09-01), Manchester
patent: 4773063 (1988-09-01), Hunsperger et al.
patent: 4774205 (1988-09-01), Choi et al.
patent: 4777613 (1988-10-01), Shahan et al.
patent: 4793872 (1988-12-01), Meunier et al.
patent: 4802182 (1989-01-01), Thornton et al.
patent: 4815084 (1989-03-01), Scifres et al.
patent: 4841775 (1989-06-01), Ikeda et al.
patent: 4845044 (1989-07-01), Ariyoshi et al.
patent: 4846926 (1989-07-01), Kay et al.
patent: 4855249 (1989-08-01), Akasaki et al.
patent: 4885376 (1989-08-01), Akasake
patent: 4868376 (1989-09-01), Lessin et al.
patent: 4876208 (1989-10-01), Gustafson et al.
patent: 4876219 (1989-10-01), Eshita et al.
patent: 4882300 (1989-11-01), Inoue et al.
patent: 4888202 (1989-12-01), Murakami et al.
patent: 4889402 (1989-12-01), Reinhart
patent: 4891091 (1990-01-01), Shastry
patent: 4896194 (1990-01-01), Suzuki
patent: 4901133 (1990-02-01), Curran et al.
patent: 4910164 (1990-03-01), Shichijo
patent: 4912087 (1990-03-01), Aslam et al.
patent: 4928154 (1990-05-01), Umeno et al.
patent: 4952420 (1990-08-01), Walters
patent: 4963508 (1990-10-01), Umeno et al.
patent: 4963949 (1990-10-01), Wanlass et al.
patent: 4965649 (1990-10-01), Zanio et al.
patent: 4984043 (1991-01-01), Vinal
patent: 4999842 (1991-03-01), Huang et al.
patent: 5028976 (1991-07-01), Ozaki et al.
patent: 5051790 (1991-09-01), Hammer
patent: 5053835 (1991-10-01), Horikawa et al.
patent: 5055445 (1991-10-01), Belt et al.
patent: 5060031 (1991-10-01), Abrokwah et al.
patent: 5063081 (1991-11-01), Cozzette et al.
patent: 5063166 (1991-11-01), Mooney et al.
patent: 5067809 (1991-11-01), Tsubota
patent: 5073981 (1991-12-01), Giles et al.
patent: 5081062 (1992-01-01), Vasudev et al.
patent: 5081519 (1992-01-01), Nishimura
patent: 5103494 (1992-04-01), Mozer
patent: 5116461 (1992-05-01), Lebby et al.
patent: 5127067 (1992-06-01), Delcoco et al.
patent: 5130762 (1992-07-01), Kulick
patent: 5132648 (1992-07-01), Trinh et al.
patent: 5140651 (1992-08-01), Soref et al.
patent: 5141894 (1992-08-01), Bisaro et al.
patent: 5143854 (1992-09-01), Pirrung et al.
patent: 5144409 (1992-09-01), Ma
patent: 5155658 (1992-10-01), Inam et al.
patent: 5159413 (1992-10-01), Calviello et al.
patent: 5163118 (1992-11-01), Lorenzo et al.
patent: 5173474 (1992-12-01), Connell et al.
patent: 5185589 (1993-02-01), Krishnaswamy et al.
patent: 5191625 (1993-03-01), Gustavsson
patent: 5194397 (1993-03-01), Cook et al.
patent: 5198269 (1993-03-01), Swartz et al.
patent: 5208182 (1993-05-01), Narayan et al.
patent: 5210763 (1993-05-01), Lewis et al.
patent: 5216729 (1993-06-01), Berger et al.
patent: 5221367 (1993-06-01), Chisholm et al.
patent: 5225031 (1993-07-01), McKee et al.
patent: 5227196 (1993-07-01), Itoh
patent: 5244818 (1993-09-01), Jokerst et al.
patent: 5248564 (1993-09-01), Ramesh
patent: 5260394 (1993-11-01), Tazaki et al.
patent: 5266355 (1993-11-01), Wernberg et al.
patent: 5270298 (1993-12-01), Ramesh
patent: 5280013 (1994-01-01), Newman et al.
patent: 5281834 (1994-01-01), Cambou et al.
patent: 5286985 (1994-02-01), Taddiken
patent: 5293050 (1994-03-01), Chapple-Sokol et al.
patent: 5306649 (1994-04-01), Hebert
patent: 5310707 (1994-05-01), Oishi et al.
patent: 5312765 (1994-05-01), Kanber
patent: 5314547 (1994-05-01), Heremans et al.
pa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for controlling anti-phase domains in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for controlling anti-phase domains in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for controlling anti-phase domains in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3026993

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.