Optics: measuring and testing – By configuration comparison – With comparison to master – desired shape – or reference voltage
Reexamination Certificate
2000-06-06
2002-06-11
Pham, Hoa Q. (Department: 2877)
Optics: measuring and testing
By configuration comparison
With comparison to master, desired shape, or reference voltage
C356S237500, C438S007000, C438S014000, C438S016000
Reexamination Certificate
active
06404498
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a manufacturing method of a semiconductor substrate such as a semiconductor wafer, a TFT (Thin Film Transistor) liquid crystal substrate, a thin film multi-layer substrate and a printed board, which have respectively micro fine circuit patterns or wiring patterns, at a high yield rate, a method and apparatus for measuring highly precise dimensions of patterns to be inspected, which comprises micro fine circuit patterns or wiring patterns formed on the object to be inspected such as the semiconductor wafer, the TFT liquid crystal substrate, the thin film multi-layer substrate and the printed board and inspecting the patterns on the object to be inspected, a method and apparatus for detecting micro fine defects of the patterns on the object to be inspected, and a microscope to be used in the aforementioned detection method.
BACKGROUND OF THE INVENTION
Recently, the patterns to be inspected, each comprising circuit patterns or wiring patterns formed on, for example, the semiconductor wafer, the TFT liquid crystal substrate, the thin film multi-layer substrate and the printed board have been adapted to be further micro-structured in response to the needs for high density integration. Since the circuit patterns or the wiring patterns are further micro-structured along with high density integration, a defect which should be detected becomes smaller or finer. Detection of such micro fine defects has been an extremely important subject in determination of an integrity of the circuit patterns or the wiring patterns in manufacturing of the circuit patterns or the wiring patterns.
However, the above-described micro structure has been further advanced and detection of micro fine defects of the patterns to be inspected such as the circuit patterns or the wiring patterns has reached the limit of resolution of the imaging optical system, and therefore essential improvement of the resolution has been demanded.
A prior art apparatus for essentially improving the resolution is disclosed in Japanese Patent Laid-Open No. Hei 5-160002. In this document, there is disclosed a pattern inspection apparatus which comprises an illumination arrangement for providing an annular-looped diffusion illumination formed with arrays of a plurality of virtual spot light sources for micro fine circuit patterns which is formed on a mask, through light source space filters, a light receiving arrangement having an optical pupil which sufficiently introduces a diffraction light from the micro fine pattern, which passes through or reflected from a mask which is almost uniformly diffusion-illuminated by the illumination arrangement and has imaging space filters for shutting off at least part of 0th order diffraction light or low order diffraction light of this introduced light, to obtain image signals by receiving the circuit pattern imaged through the optical pupil, and a comparison arrangement for comparing the image signals obtained by the light receiving arrangement with mask pattern data or wafer pattern data or data from a transfer simulator to inspect the pattern. In this document, there is also disclosed a method for controlling a shape of a light source space filter and an imaging space filter in accordance with the pattern shape data.
However, there has been a problem that, though, in the above-described prior art with respect to detection of a defect of the micro fine pattern. That is, although a defect of the micro fine pattern is detected by applying the annular-looped diffusion illumination to the micro fine pattern on the object to be inspected and sufficiently introducing the diffraction light from the micro fine pattern into the opening (pupil) of the objective lens to obtain high resolution image signals, full consideration has not been taken for the point that a micro fine defect should be detected with high reliability in response to various micro fine patterns existing on the object to be inspected.
Further, full consideration has also not been given for manufacturing semiconductor substrates having micro fine patterns such as a semiconductor wafer, a TFT liquid crystal substrate, a thin film multi-layer substrate and a printed board with reduced defects and high yield rate.
SUMMARY OF THE INVENTION
An object of the present invention is to solve the above problems of the prior art and to provide a method for manufacturing semiconductor substrates which is adapted to manufacture semiconductor substrates such as, for example, a semiconductor wafer, a TFT liquid crystal substrate, a thin film multi-layer substrate and a printed board, each having micro fine patterns, in a high yield rate.
Another object of the present invention is to provide a pattern detection method for detecting a pattern on an object to be inspected and an apparatus thereof (microscope system) which are adapted to detect a defect of a micro fine pattern with high reliability in response to various micro fine patterns provided on objects to be inspected such as a semiconductor wafer, a TFT liquid crystal substrate, a thin film multi-layer substrate, and a printed board.
A further another object of the present invention is to provide a method and an apparatus for inspecting a defect of a pattern on the object to be inspected which are adapted to inspect a micro fine defect of a micro fine pattern with high reliability in response to various micro fine patterns provided on objects to be inspected such as a semiconductor wafer, a TFT liquid crystal substrate, a thin film multi-layer substrate, and a printed board.
To achieve the above objects, a semiconductor substrate manufacturing method for manufacturing semiconductor substrates each having patterns formed by a manufacturing line comprising various process units, according to the present invention comprises: a history data or data base build-up step for building up history data or data base which shows a relation of causes and effects by accumulating in advance the history data or data base showing the relation of defect information of a pattern which appears on the semiconductor substrate and a cause of defect or a factor of defect which causes a defect of the pattern in the manufacturing line; a defect inspection step for detecting the defect information of the pattern by comparing image signals of the pattern on the semiconductor substrate with image signals of the reference pattern, for the semiconductor substrate which has reached a specified position of the manufacturing line; a defect analyzing step for analyzing a cause of defect or a factor of defect which causes a defect of the pattern in the manufacturing line located at an upper stream from the specified position of the manufacturing line, according to the defect information of the pattern detected in the defect inspection step and the history data or the data base which shows the relation of causes and effects, built up in the history data or data base build-up step; and a process condition control step for controlling process conditions in the above-described upper stream manufacturing line to eliminate the cause of defect or the factor of defect analyzed in the defect analyzing step.
With the configuration described above, the present invention enables inspection of micro fine defects with high resolution and high sensitivity on semiconductor substrates such as the semiconductor wafer, the TFT substrate, the thin film multi-layer substrate and the printed board each having micro fine patterns (for example, patterns the pitch of which is 1 &mgr;m or under (0.8 to 0.4 &mgr;m)), to reduce the number of micro fine defects on the semiconductor substrates by feeding back the results of inspection to the manufacturing processes for semiconductor substrates, and to manufacture the semiconductor substrates having micro fine patterns with a high yield rate.
According to the present invention, for materializing a manufacturing method of the semiconductor substrate, a method and apparatus for detecting a defect of the patterns on the object to be inspected are adapted to de
Kubota Hitoshi
Maeda Shunji
Nakayama Yasuhiko
Oka Kenji
Yoshida Minoru
Antonelli Terry Stout & Kraus LLP
Hitachi , Ltd.
Pham Hoa Q.
LandOfFree
Manufacturing method of semiconductor substrate and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Manufacturing method of semiconductor substrate and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Manufacturing method of semiconductor substrate and method... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2981356