Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Central trusted authority provides computer authentication
Reexamination Certificate
1999-08-05
2003-08-19
Peeso, Thomas R. (Department: 2132)
Electrical computers and digital processing systems: support
Multiple computer communication using cryptography
Central trusted authority provides computer authentication
C713S182000, C713S152000, C713S152000
Reexamination Certificate
active
06609198
ABSTRACT:
BACKGROUND
1. Field of the Invention
The invention relates to information security, and more particularly, to systems and method for improving the security of information transactions over networks.
2. Description of the Related Art
The internet has become an important medium for information services and electronic commerce. As the internet has been commercialized, organizations initially established their presence in cyberspace by making information (typically static, non-sensitive promotional information) available on resources well removed from the operational infrastructure of the organization. Security issues were often addressed by isolating publicly accessible resources (e.g., web servers) from more sensitive assets using firewall techniques. As long as the publicly accessible information and resources were relatively non-sensitive and user interactions with such information and resources was not mission critical, relatively simple firewall techniques were adequate. Though information and resources outside the firewall were at risk, the risk could generally be limited to non-proprietary information that was easily replaceable if compromised. Proprietary information and systems critical to day-to-day operations were sheltered behind the firewall and information flows across the firewall were filtered to exclude all but the comparatively non-threatening services such as electronic mail.
However, as the internet has become more pervasive, and as the sophistication of tools and techniques has increased, several aspects of the security environment have changed dramatically. First, businesses have recognized the power of information transactions that more tightly couple to operational data systems, such as order processing, inventory, payment systems, etc. Such transactions include electronic commerce with direct purchasers or consumers (e.g., browsing, selecting and purchasing of books by members of the public from an on-line bookseller) as well as supply chain and/or business partner interactions (e.g., automated just-in-time inventory management, customer-specific pricing, availability and order status information, etc.). Commercially relevant transactions increasingly require information flows to and from secure operational systems. Second, even information-only services are increasingly mission-critical to their providers. Corporate image can be adversely affected by unavailability of, or degradation access to, otherwise non-sensitive information such as customer support information, product upgrades, or marketing and product information. Because many businesses rely heavily on such facilities, both unauthorized modification and denial of service represent an increasing threat.
Individual information service or transaction system typically exhibit differing security requirements. While it is possible to field individualized security solutions for each information service or transaction system, individualized solutions make it difficult to maintain a uniform security policy across a set of applications or resources. Furthermore, individualized solutions tend to foster incompatible security islands within what would ideally be presented to consumers or business partners as a single, integrated enterprise. For example, a user that has already been authenticated for access to an order processing system may unnecessarily be re-authenticated when accessing an order status system. Worse still, a set of individualized solutions is typically only as good as the weakest solution. A weak solution may allow an enterprise to be compromised through a low security entry point.
Another problem with individualized solutions is a veritable explosion in the number of access controls confronting a user. As more and more business is conducted using computer systems, users are confronted with multiple identifiers and passwords for various systems, resources or levels of access. Administrators are faced with the huge problem of issuing, tracking and revoking the identifiers associated with their users. As the “user” community grows to include vendors, customers, potential customers, consultants and others in addition to employees, a huge “id explosion” faces administrators. Furthermore, as individual users are themselves confronted with large numbers of identifiers and passwords, adherence to organizational security policies such as password restrictions, and requirements (e.g., length, character and/or case complexity, robustness to dictionary or easily-ascertainable information attack, frequency of update, etc.) may be reduced. As users acquire more passwords—some individuals may have 50 or more—they cannot help but write down or create easy-to-remember, and easy-to-compromise, passwords.
SUMMARY
Accordingly, a security architecture has been developed in which a single sign-on is provided for multiple information resources. Rather than specifying a single authentication scheme for all information resources, security architectures in accordance with some embodiments of the present invention associate trust-level requirements with information resources. Authentication schemes (e.g., those based on passwords, certificates, biometric techniques, smart cards, etc.) are associated with trust levels and environmental parameters. In one configuration, a log-on service obtains credentials for an entity commensurate:with the trust-level requirement(s) of an information resource (or information resources) to be accessed and with environment parameters that affect the sufficiency of a given credential type. Once credentials have been obtained for an entity and have been authenticated to a given trust level, access is granted, without the need for further credentials and authentication, to information resources for which the trust level is sufficient given a current session environment. Credential insufficiency may be remedied by a session continuity preserving credential upgrade.
A novel aspect o,f the log-on service is an ability to upgrade credentials for a given session. This capability is particularly advantageous in the context of a single, enterprise-wide log-on. An entity (e.g., a user or an application) may initially log-on with a credential suitable for one or more resources in an initial resource set, but then require access to resource requiring authentication at higher trust level. In such case, the log-on service allows additional credentials to be provided to authenticate at the higher trust level. Similarly, credentials may be downgraded in some configurations when no longer required. The log-on service allows upgrading and/or downgrading without loss of session continuity (i.e., without loss of identity mappings, authorizations, permissions, and environmental variables). By allowing upgrades and/or downgrades, the log-on service allows an entity to tailor its credentialing to current access requirements. Furthermore, by allowing upgrades and downgrades, the log-on service allows enterprise-wide security policies to be implemented in which an overcredentialled log-on state (e.g., as root) is not required or need not be maintained.
In one embodiment in accordance with the present invention, a method of providing a persistent session in a networked information environment includes associating a unique session identifier with a set of access requests originating from a client entity and maintaining the unique session identifier across a credential level change. In one variation, the method further includes issuing one or more cryptographically secured session tokens to the client entity and supplying at least one of the cryptographically secured session tokens with each of the access requests. Each of the cryptographically secured session tokens encodes the unique session identifier.
In another embodiment in accordance with the present invention, a method for providing credential level change in a security architecture includes obtaining a first credential for a client entity and authenticating the client entity thereby, accessing a first of plural information resources, and if the client e
Ferris Chris
Norton Derk
Soley William R.
Weschler Paul
Wilson Yvonne
Peeso Thomas R.
Sun Microsystems Inc.
Zagorin O'Brien & Graham LLP
LandOfFree
Log-on service providing credential level change without... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Log-on service providing credential level change without..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Log-on service providing credential level change without... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3097399