Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate
Reexamination Certificate
1999-09-08
2002-01-08
Lee, Eddie (Department: 2815)
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
Having insulated gate
C257S295000, C257S310000, C257S306000, C438S253000, C438S504000, C438S505000, C438S506000, C438S507000, C438S508000, C438S509000
Reexamination Certificate
active
06337239
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a layer configuration with a material layer and a diffusion barrier which blocks diffusing material components. The invention also relates to a process for producing a diffusion barrier to block diffusing material components.
A frequently encountered problem of production or operation processes is that of undesirable diffusion effects from material components, which effects need to be suppressed. A measure which is often used to achieve the suppression is the provision of diffusion barriers.
It is common to use layers of material which require a generation or post-treatment step at high temperature, especially in semiconductor technology, for example. That applies, for example, to ferroelectric materials or dielectric materials with a high dielectric constant, such as those which occur as dielectric or ferroelectric layers in capacitors, for example. In that specific case, for example, it is possible to use materials such as SBT SrBi
2
Ta
2
O
9
, SBTN SrBi
2
(Ta
1−x
Nb
x
)
2
O
9
, PZT Pb
x
Zr
1−x
TiO
3
or BST Ba
x
Sr
1−x
TiO
3
. Those materials are known, for example, from German Patent DE 196 40 273 C1, corresponding to U.S. patent application Ser. No. 09/281,691, filed Mar. 30, 1999 and German Published, Non-Prosecuted Patent Application DE 196 40 240 A1, corresponding to U.S. patent application Ser. No. 09/281,817, filed Mar. 30, 1999. However, it is also possible to use materials such as Ta
2
O
5
, TiO
2
, oxides or oxynitrides. Temperatures of up to 800° C. are required for thermal treatment steps under an oxygen atmosphere in order to produce capacitors for integrated circuits using exactly the ferroelectric materials or dielectric materials with high dielectric constant which have been mentioned above.
Such high temperatures, in the presence of oxygen, promote the diffusion of material components from those material layers into adjoining layers, and diffusion of the oxygen which is required for the thermal treatment. For example, it is possible for oxides to escape through undesirable diffusion processes, for example Bi
2
O
3
or PbO, which are able to diffuse into adjoining material layers with relative ease. The diffusion of the oxygen itself is also considerably promoted under such conditions. In addition, it is precisely at the relatively high temperatures being used that reactions of the escaping components with the adjoining layers are promoted.
Thus, there is a risk of the escaping material components having an adverse affect on further operating steps or damaging adjoining layers. For example, an adjoining electrode layer may be oxidized by escaping oxides or oxygen and thus a conductive connection can be interrupted, or else diffusion may take place through the electrode layer, e.g. a platinum layer, in which case the oxides or oxygen may react with adhesion promoters or insulation layers, such as SiO
2
, which adjoin the electrode. Naturally, undesirable diffusion processes may also take place in the opposite direction, i.e. material components from adjoining layers may diffuse into the material layers mentioned above.
Similar problems arise primarily where material components are unable to escape from material layers as a result of diffusion or where readily diffusing, undesirable material components are present in certain areas or spaces, and layers, areas, gases or spaces, such as, for example, material layers, conductor areas, coating or analysis chambers which can be destroyed or damaged by the diffusing material components are present in the surrounding area. Thus the application of the invention is not restricted to semiconductor configurations with dielectric or ferrorelectric layers, but rather the inventive concept may be employed in all areas in which diffusion of undesirable material components is to be prevented.
It is already known from an article entitled: Process Integration for Nonvolatile Ferroelectric Memory Fabrication, by R. E. Jones and S. B. Desu, in MRS Bulletin June 1996, pp. 55-58, that TiN or TaN are possible barrier materials, in particular for semiconductor configurations. However, those materials are not especially stable in particular at those high temperatures and are attacked after a relatively short time, in particular by oxides. On the other hand, titanium oxide or zirconium oxide are also proposed as diffusion barriers counteracting oxide diffusion from oxide-containing material layers. In that case, however, it is still intended to use a separate barrier layer to suppress the undesirable diffusion processes.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a layer configuration with a material layer and a diffusion barrier which blocks diffusing material components and a process for producing a diffusion barrier, which overcome the hereinafore-mentioned disadvantages of the heretofore-known layers and processes of this general type and which provide an improved possibility for preventing diffusion processes.
With the foregoing and other objects in view there is provided, in accordance with the invention, a layer configuration, comprising a material layer having a layer boundary and grain boundaries; and a diffusion barrier blocking diffusing material components, the diffusion barrier disposed in the vicinity of the layer boundary of the material layer and formed predominantly in the grain boundaries of the material layer.
With the objects of the invention in view there is also provided a process for producing a diffusion barrier to block diffusing material components in the vicinity of a layer boundary of a material layer having grain boundaries, which comprises forming the diffusion barrier predominantly in the grain boundaries of the material layer.
It is possible to achieve an effective diffusion-inhibiting action by forming a diffusion barrier predominantly in the grain boundaries of a material layer. In this context, predominantly means that there may be a small covering of the surface of the material layer by diffusion-inhibiting substances in addition to the formation of the diffusion barrier in the grain boundaries. Preferably, however, the diffusion barrier is established exclusively in the grain boundaries.
The diffusion barrier may, for example, be formed by exceeding the solubility of the corresponding substance which exhibits the diffusion-inhibiting action in the material layer. This allows substances which exhibit a diffusion-inhibiting action in the grain boundaries of the material layer to be intercalated by precipitation in these very grain boundaries. This is of particular importance with regard to suppression of diffusion of substances which diffuse precisely through these grain boundaries of material layers. Therefore, it is precisely in such a case that the introduction of substances into the grain boundaries of a material layer constitutes a very effective diffusion barrier.
The substances which are to be intercalated may be selected in such a way that they scarcely react with the material layer, i.e. are substantially inert with respect to this material layer, at least under the boundary conditions under which the material layer and the diffusion barrier are produced and employed. In this case, there is no reason why the substances which are to be intercalated may not be reactive with respect to other substances or layers, for example with respect to auxiliary layers involved in the production process or with respect to the diffusing material components of which the diffusion is to be suppressed.
On the other hand, however, it is also possible to use substances which form a chemical compound with the material of the material layer in order to form the diffusion barrier.
A particular advantage of the invention is that the diffusion barrier which is provided does not have to be applied as an additional, independent layer, but rather can be integrated in a material layer which is already present. The diffusion barrier may be integrated, for example, directly in a material layer
Dehm Christine
Mazure-Espejo Carlos
Brock II Paul E
Greenberg Laurence A.
Lerner Herbert L.
Siemens Aktiengesellschaft
Stemer Werner H.
LandOfFree
Layer configuration with a material layer and a diffusion... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Layer configuration with a material layer and a diffusion..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Layer configuration with a material layer and a diffusion... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2869903