Integrated circuit memory devices having error checking and...

Error detection/correction and fault detection/recovery – Pulse or data error handling – Digital data error correction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C714S735000

Reexamination Certificate

active

06678860

ABSTRACT:

RELATED APPLICATION
This application is related to Korean Application No. 99-32908, filed Aug. 11, 1999, the disclosure of which is hereby incorporated herein by reference.
FILED OF THE INVENTION
The present invention relates to semiconductor memory devices, and more particularly, to semiconductor memory devices having on-chip error correction capability.
BACKGOUND OF THE INVENTION
Due to the recent development of micro technology, semiconductor devices can be designed to be highly integrated and operate at high speed. Particularly for high integrated semiconductor memory devices, a high yield is desired.
A semiconductor memory device is composed of many memory cells. Among these memory cells, if even one memory cell does not properly operate, the overall semiconductor memory device cannot function properly. As the degree of integration of semiconductor memory devices increases, the probability that malfunction occurs in memory cells increases. Malfunction is caused by defects in the memory cells themselves or by soft errors resulting from the incidence of a particles. Malfunctioning damages the function of a semiconductor memory device and thus, is a principal cause of reduction in the yield of semiconductor memory devices.
To solve these problems, a technique of installing a redundancy circuit on a chip is widely used to substitute redundant cells for defective cells, thereby improving the yield. The redundancy circuit drives a redundancy memory cell block in which redundant cells are arranged in row and column directions, and selects a redundancy cell in the redundancy memory cell block for substituting for a defect cell. In other words, once an address signal designating a defective cell is input to the redundancy circuit, the redundancy circuit selects a redundancy memory cell for substituting for a normal memory cell having a defect.
In the conventional technology using the redundancy circuit, the number of redundancy memory cells is predetermined and the redundancy memory cells are disposed near to a memory cell block. In a case in which the number of defective cells exceeds the predetermined number of redundancy memory cells, some defective cells cannot be substituted for by redundancy memory cells. In such a case, a semiconductor memory device is finally determined to be bad and discarded. Accordingly, the improvement of the yield of semiconductor memory devices is limited.
There is another method of improving the yield of semiconductor memory devices. In this method, error check and correction (ECC) functions are installed in a semiconductor memory device. The technology related to the on-chip ECC is disclosed in U.S. Pat. No. 4,903,268.
FIG. 1
of the ′268 patent illustrates a syndrome generating circuit
7
that performs an exclusive-OR operation on the real check bits “e” and the write check bits “d”.
U.S. Pat. No. 4,903,268 introduces a semiconductor memory device having on-chip ECC, in which data in a parity bit memory cell array can be independently accessed through switching means for external functionality testing of the parity bit memory cell array as well as a data bit memory cell array. The ECC of the U.S. Pat. No. 4,903,268 is usually effective in asynchronous semiconductor memory devices.
Another method for improving the yield of semiconductor memory devices is to combine the redundancy technique and the ECC technology, which is disclosed in an article by H. Kalter et al., entitled “A 50-ns 16-Mb DRAM with a 10-ns Data Rate and On-Chip ECC,” IEEE Journal of Solid-State Circuits, Vol. 25, No. 5, pp. 1118-1127 (1990). According to the H. Kalter et al. article, among all the outputs of the bit line sense amplifiers, which are activated in response to the activation of a single word line, that is, among 1112 bits, except for 16 bits, 1096 bits of redundant bit lines are included in eight ECC words each of which is composed of 128 data bits and 9 parity bits. In this method, since the number of bits of a single ECC word is large, an arithmetic logic block, which is necessary for checking bits for errors and determining the bits are normal or erroneous, is large and operation time is also long. Consequently, the method is not suitable for rapid operation. Therefore, an ECC circuit which does not impede the rapid operation of a synchronous semiconductor memory device is required.
SUMMARY OF THE INVENTION
Preferred integrated circuit memory devices comprise a memory cell array having therein a plurality of stored data bits and a plurality of parity bits generated from a plurality of write data bits received by the memory device during a write operation. The plurality of stored data bits and the plurality of parity bits may collectively form a word having a length of m+p bits, where m and p are integers. An error check circuit is also provided. The error check circuit converts the plurality of stored data bits and the plurality of parity bits into a plurality of syndrome bits (e.g., Si) that designate a location of a bit error in the plurality of stored data bits when compared against the original write data bits. These write data bits may be received by an input buffer within the memory device and the stored data bits may have error therein (relative to the write data bits) that was generated during the write operation. These preferred memory devices also preferably comprise an error correction circuit that uses the plurality of syndrome bits to correct an error in the plurality of stored data bits and after the correction generate a plurality of read data bits that match the plurality of original write data bits.
According to preferred aspects of these memory devices, the plurality of stored data bits and the plurality of parity bits collectively form an N-bit word (i.e., m+p=N). A binary value of the plurality of syndrome bits may also equal an integer n. Based on this arrangement, the error correction circuit may correct an error in the plurality of stored data bits by inverting an nth bit of the N-bit word and then passing the corrected word as a plurality of read data bits that match the plurality of write data bits. According to other preferred aspects of these devices, the plurality of syndrome bits are generated by providing the plurality of stored data bits and the plurality of parity bits to a plurality of logic gates that perform an exclusive OR operation. In particular, each of the plurality of logic gates has inputs that receive at least two of the plurality of stored data bits and at least one of the plurality of parity bits. The error correction circuit may also comprise a decoder that receives the plurality of syndrome bits and has a plurality of decoder outputs. This decoder may comprise a plurality of NAND gates that receive various combinations of the syndrome bits and inverted versions of the syndrome bits as inputs. The error correction circuit may also comprise a data correction circuit therein that receives the plurality of stored data bits and is electrically connected to the plurality of decoder outputs. A preferred data correction circuit may comprise a plurality of data correction units. Each data correction unit may receive a respective one of the plurality of stored data bits at a first input thereof and a respective one of the plurality of decoder outputs at a second input thereof.
According to still further embodiments of the present invention, a synchronous semiconductor memory device may be provided having a memory cell block with a plurality of memory cells, the memory cell block including a data bit memory cell array, which stores m data bits, and a parity bit memory cell array, which stores p parity bits, and an on-chip ECC circuit for checking and correcting errors of the (m+p) bits which are read from the memory cell block. The ECC circuit includes an error check circuit for selectively performing an exclusive OR operation with respect to the (m+p) bits to generate syndrome data, and an error correction circuit for correcting a data bit at a position corresponding to the syndrome data in th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated circuit memory devices having error checking and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated circuit memory devices having error checking and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated circuit memory devices having error checking and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3246258

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.