Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate
Reexamination Certificate
2007-03-06
2007-03-06
Booth, Richard A. (Department: 2812)
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
Having insulated gate
C438S276000, C257SE21532
Reexamination Certificate
active
10867006
ABSTRACT:
A semiconductor device is disclosed that includes integrated insulated-gate field-effect transistor (IGFET) elements and one or more negative differential resistance (NDR) field-effect transistor elements, combined and formed on a common substrate. Thus, a variety of circuits, including logic and memory are implemented with a combination of conventional and NDR capable FETs. Because both types of elements share a number of common features, they can be fabricated with common processing operations to achieve better integration in a manufacturing facility.
REFERENCES:
patent: 3588736 (1971-06-01), McGroddy
patent: 4047974 (1977-09-01), Harari
patent: 4143393 (1979-03-01), DiMaria et al.
patent: 4806998 (1989-02-01), Vinter et al.
patent: 4945393 (1990-07-01), Beltram et al.
patent: 4992389 (1991-02-01), Ogura et al.
patent: 5021841 (1991-06-01), Leburton et al.
patent: 5032891 (1991-07-01), Takagi et al.
patent: 5093699 (1992-03-01), Weichold et al.
patent: 5130763 (1992-07-01), Delhaye et al.
patent: 5162880 (1992-11-01), Hazama et al.
patent: 5189499 (1993-02-01), Izumi et al.
patent: 5357134 (1994-10-01), Shimoji
patent: 5390145 (1995-02-01), Nakasha et al.
patent: 5477169 (1995-12-01), Shen et al.
patent: 5543652 (1996-08-01), Ikeda et al.
patent: 5606177 (1997-02-01), Wallace et al.
patent: 5633178 (1997-05-01), Kalnitsky
patent: 5689458 (1997-11-01), Kuriyama
patent: 5698997 (1997-12-01), Williamson, III et al.
patent: 5705827 (1998-01-01), Baba et al.
patent: 5770958 (1998-06-01), Arai et al.
patent: 5773996 (1998-06-01), Takao
patent: 5804475 (1998-09-01), Meyer et al.
patent: 5869845 (1999-02-01), Van der Wagt et al.
patent: 5883549 (1999-03-01), De Los Santos
patent: 5883829 (1999-03-01), Van der Wagt
patent: 5895934 (1999-04-01), Harvey et al.
patent: 5903170 (1999-05-01), Kulkarni et al.
patent: 5907159 (1999-05-01), Roh et al.
patent: 5936265 (1999-08-01), Koga
patent: 5953249 (1999-09-01), Van der Wagt
patent: 5959328 (1999-09-01), Krautschneider et al.
patent: 5962864 (1999-10-01), Leadbeater et al.
patent: 6015978 (2000-01-01), Yuki et al.
patent: 6077760 (2000-06-01), Fang et al.
patent: 6091077 (2000-07-01), Morita et al.
patent: 6104631 (2000-08-01), El-Sharawy et al.
patent: 6246606 (2001-06-01), Forbes et al.
patent: 6294412 (2001-09-01), Krivokapic
patent: 6301147 (2001-10-01), El-Sharawy et al.
patent: 6303942 (2001-10-01), Farmer
patent: 6410371 (2002-06-01), Yu et al.
patent: 6528356 (2003-03-01), Nemati et al.
patent: 6680245 (2004-01-01), King et al.
patent: 2001/0005327 (2001-06-01), Duane et al.
patent: 2001/0019137 (2001-09-01), Koga et al.
patent: 2002/0096689 (2002-07-01), Nemati et al.
patent: 1085656 (2001-03-01), None
patent: 1107317 (2001-06-01), None
patent: 0526897 (2001-11-01), None
patent: WO 9963598 (1999-04-01), None
patent: WO 0041309 (2000-07-01), None
Alejandro F. Gonzalez, et al., “Standard CMOS Implementation of a Multiple-Valued Logic Signed-Digit Adder Based on Negative Differential-Resistance Devices,” Proceedings of the 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000), 6 pages.
Seabaugh A., Brar B., Broekaert T., Morris F., and Frazier G., “Resonant Tunneling Mixed Signal Circuit Technology,” Solid-State Electronics 43:1355-1365, 1999.
G. Wirth, et al., “Negative Differential Resistance in Ultrashort Bulk MOSFETs,” IECON'99 Conference Proceedings, vol. 1, San Jose, 1999, S. 29-34.
R. H. Mathews, et al., “A New RTD-FET Logic Family,” Proceedings of the IEEE, vol. 87, No. 4, pp. 596-605, 1999.
J. P. A. Van Der Wagt, “Tunneling-Based SRAM,” Proceedings of the IEEE, vol. 87, No. 4, pp. 571-595, 1999.
C. P. Heij, et al., “Negative Differential Resistance Due to Single-Electron Switching,” Applied Physics Letters, vol. 74, No. 7, Feb. 15, 1999, 5 pages.
C. Pacha, et al., “Resonant Tunneling Device Logic Circuits,” Microelectronics Advanced Research Initiative (MEL-ARI,) Jul. 1998-Jul. 1999, pp. 1-22.
A. Seabaugh, “Promise of Tunnel Diode Integrated Circuits,” Tunnel Diode and CMOS/HBT Integration Workshop, Dec. 9, 1999, Naval Research Laboratory, Washington, DC., 13 Pages.
Jian Fu Zhang, “Traps: Detrapping,” Wiley Encyclopedia of Electrical and Electronics Engineering Online, Article Posting Date: Dec. 27, 1999, John Wiley & Sons, Inc., 4 Pages.
Jian Fu Zhang, “Traps: Effects of Traps and Trapped Charges on Device Performance,” Wiley Encyclopedia of Electrical and Electronics Engineering Online, Article Posting Date: Dec. 27, 1999, John Wiley & Sons, Inc., 2 Pages.
Jian Fu Zhang, “Traps: Measurement Techniques,” Wiley Encyclopedia of Electrical and Electronics Engineering Online, Article Posting Date: Dec. 27, 1999, John Wiley & Sons, Inc., 5 Pages.
Jian Fu Zhang, “Traps,” Wiley Encyclopedia of Electrical and Electronics Engineering Online, Article Posting Date: Dec. 27, 1999, John Wiley & Sons, Inc., 2 Pages.
Jian Fu Zhang, “Traps: Trapping Kinetics,” Wiley Encyclopedia of Electrical and Electronics Engineering Online, Article Posting Date: Dec. 27, 1999, John Wiley & Sons, Inc., 2 Pages.
Jian Fu Zhang, “Traps: Origin of Traps,” Wiley Encyclopedia of Electrical and Electronics Engineering Online, Article Posting Date: Dec. 27, 1999, John Wiley & Sons, Inc., 4 pages.
Gardner, Carl, Ringhofer, Christian, “Smooth Quantum Hydrodynamic Model Simulation of the Resonant Tunneling Diode,” Dept. Of Mathematics Arizona State University, pp. 1-5, (1998).
Jungel, A, Pohl, C., “Numerical Simulation of Semiconductor Devices: Energy-Transport and Quantum Hydrodynamic Modeling,” Fachbereich Math., Tech. Univ. Berlin, Germany, pp. 1-9, 1998.
S.M.A. Nimour, R. Quasti, N. Zekri, “Effect of Spatially Disordered Barriers on the Band Structure of Finite Superlattices,” phys. stat. sol. (b) 1998, 209, No. 2, 311-318.
S. L. Rommel, et al., “Room Temperature Operation of Epitaxially Grown Si/S10.5Ge0.5/Si Resonant Interband Tunneling Diodes,” Applied Physics Letters, vol. 73, No. 15, pp. 2191-2193, 1998.
News Release from www.eurekalert.org/releases/udel-udcnflb.html, “UD Computer News: Future Looks Bright for Tunnel Diodes, Promising Faster, More Efficient Circuits,” Oct. 1, 1998, 4 pages.
P. Mazumder, et al., “Digital Circuit Applications of Resonant Tunneling Devices,” Proceedings of the IEEE, vol. 86, No. 4, pp. 664-686, Apr. 1998.
J. P. Sun, et al., “Resonant Tunneling Diodes: Models and Properties,” Proceedings of the IEEE, vol. 86, No. 4, Apr. 1998, pp. 641-661.
J. P. A. Van Der Wagt, et al., “RTD/HFET Low Standby Power SRAM Gain Cell,” Source: Corporate Research Laboratories, Texas Instruments, 1998, 4 pages.
C. Pacha and K. Goser, “Design of Arithmetic Circuits using Resonant Tunneling Diodes and Threshold Logic,” Lehrstuhl Bauelemente der Elektrotechnik, Universitat Dortmund, pp. 1-11, Sep. 1997.
G. I. Haddad et al., “Tunneling Devices and Applications in High Functionality/Speed Digital Circuits,” Solid State Electronics, vol. 41, No. 10, Oct. 1997, pp. 1515-1524.
S. J. Koester, et al., “Negative Differential Conductance in Lateral Double-Barrier Transistors Fabricated in Strained Si Quantum Wells,” Applied Physics Letters, vol. 70, No. 18, May 1997, pp. 2422-2424.
Shao, Z., Porod, W., Lent, C., & Kirkner, D., “Transmission Zero Engineering in Lateral Double-Barrier Resonant Tunneling Devices,” Dept. Of Electrical Engineering, University of Notre Dame, pp. 1-7 (1996).
E. Chan, et al., “Mask Programmable Multi-Valued Logic Gate Arrays Using RTDs and HBTs,” IEE Proceedings-E: Computers and Digital Techniques, vol. 143, No. 5, Oct. 1996, pp. 289-294.
E. Chan, et al., “Compact Multiple-Valued Multiplexers Using Negative Differential Resistance Devices,” IEEE Journal of Solid-State Circuits, vol. 31, No. 8, Aug
Bever Hoffman & Harms LLP
Booth Richard A.
Synopsys Inc.
LandOfFree
Insulated-gate field-effect transistor integrated with... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Insulated-gate field-effect transistor integrated with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Insulated-gate field-effect transistor integrated with... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3799147