In situ deposition and integration of silicon nitride in a...

Coating processes – Coating by vapor – gas – or smoke – Mixture of vapors or gases utilized

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S255390, C427S255393, C427S569000, C427S578000, C427S579000, C438S763000

Reexamination Certificate

active

06372291

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a process and apparatus for the deposition of dielectric layers during semiconductor substrate processing. More specifically, the present invention relates to a method for depositing and integrating layers of fluorosilicate glass and silicon nitride in a high-density plasma chemical vapor deposition reactor.
Semiconductor device geometries continue to decrease in size, providing more devices per fabricated wafer and faster devices. Since the introduction of semiconductor integrated circuits several decades ago, integrated circuits have generally followed a trend of more transistors in less space with each new generation of devices. Currently, some devices are being fabricated with less than 0.25 &mgr;m spacing between features. In some cases there is as little as 0.18 &mgr;m spacing between device features. Examples of these features are conductive lines or traces pattered on a layer of metal. Aluminum has been typically used in such traces. Recently, techniques have been developed for depositing traces made of copper. Copper is desirable in such traces as it is a more electrically conductive material than aluminum.
A nonconductive layer of dielectric material, such as a silicon oxide, is often deposited between and over the patterned metal layer. This dielectric layer may serve several purposes, including electrically insulating the metal layer from other metal layers, insulating conductive features within the layer from each other and protecting the metal layer and/or features from physical or chemical damage. As the spacing, or gap, between the conductive features becomes smaller, the capacitance of the resulting devices becomes larger. Increased capacitance can slow down the operation of an integrated circuit. One way to reduce the capacitance is to use an insulating material with a low dielectric constant. Such materials are often referred to as low k dielectrics.
One approach to depositing low dielectrics to fill gaps is to incorporate halogen atoms into a silicon dioxide layer. Examples of Halogen incorporation are described in U.S. patent application Ser. No. 08/548,391, filed Oct. 25, 1995 and entitled “METHOD AND APPARATUS FOR IMPROVING FILM STABILITY OF HALOGEN-DOPED SILICON OXIDE FILMS”, and Ser. No. 08/538,696, filed Oct. 2, 1995 and entitled “USE OF SiF
4
TO DEPOSIT F-DOPED FILMS OF GREATER STABILITY”, both of which are incorporated herein by reference. It is believed that halogen dopants, such as fluorine, lower the dielectric constant of the silicon oxide films because halogens are electronegative atoms that decrease the polarizability of the overall SiOF network. Fluorine doped silicon oxide films are often referred to as fluorinated silicate glass (FSG) films.
The fluorine content generally determines the properties of a layer of FSG such as the dielectric constant. The fluorine content of the FSG is measured with Fourier Transform Infrared Spectroscopy (FTIR) in terms of the ratio the heights of two absorption peaks. The height of a first (SiF) peak generally indicates the presence of Si—F bonds. The height of a second (SiO) peak generally indicates the presence of Si—O bonds. The average fluorine concentration in the FSG is measured by percentage peak height ratio (% PHR) as follows:
%



PHR
=
SiF
SiO
×
100

%
Direct measurement of the fluorine content of the FSG has shown that the % PHR is roughly proportional to the atomic % fluorine (at. % F) in the FSG layer. The at. % F is sometimes approximated by the formula:
at. % F=(%
PHR

K,
where K is an empirically determined constant. The fluorine concentration (at. % F) can be determined by such methods as secondary ion mass spectroscopy (SIMS), attenuated total reflection (ATR), or elemental analysis.
One way to deposit a dielectric layer is by chemical reaction of gases. Such a deposition process is referred to as chemical vapor deposition (CVD). Thermal CVD processes supply reactive gases to the substrate surface where heat-induced chemical reactions take place to produce a desired film. The high temperatures at which some thermal CVD processes operate can damage metal layers on device structures. Plasma enhanced CVD (PECVD) processes, on the other hand, promote excitation and/or dissociation of the reactant gases by capacitively coupling radio frequency (RF) energy to a reaction zone proximate the substrate surface, thereby creating a plasma of highly reactive species. The high reactivity of the released species reduces the energy required for a chemical reaction to take place and thus lowers the required temperature for such CVD processes. Unfortunately some PECVD processes cause variations in deposition rates according the geometry of the underlying feature. Such phenomena can create voids in the bottoms of the gaps.
Improved gap filling can be obtained with high-density plasma CVD (HDP-CVD) systems. In HDP-CVD, RF coils generate an inductively coupled plasma under low-pressure conditions. The density of such a plasma is greater by approximately two or more orders of magnitude than the density of a capacitively coupled PECVD plasma. It is believed that the lower chamber pressure employed in HDP-CVD systems provides active species with a long mean free path. The long mean free path combined with the high density allows a significant number of plasma constituents to reach even the deepest portions of closely spaced gaps, providing a film with excellent gap filling capabilities. The high density associated with HDP-CVD also promotes sputtering during deposition. The sputtering is believed to slow the deposition at the top of the gap and thus keep the gap from closing prematurely.
Unfortunately there are some problems associated with FSG layers separating copper conductive traces. One problem is that copper is highly diffusive in dielectric materials such as FSG. Furthermore, a poorly formed FSG layer may absorb moisture from the atmosphere or from reaction products associated with the deposition process. Copper diffusion and moisture absorption can be prevented by depositing a thin layer of silicon nitride (Si
3
N
4
) on top of an FSG or between the FSG layer and the copper layer. The silicon nitride acts as a diffusion barrier. Copper has a diffusion length in silicon nitride of between approximately 150 and 200 angstroms. Thus a Si
3
N
4
layer 200 angstrom thickness or greater is sufficient to prevent diffusion of copper into a dielectric layer underlying, or overlying, the Si
3
N
4
. Unfortunately, fluorine tends to outgas from the FSG at temperatures of about 350 C. The outgassing fluorine forms “bubbles” in an overlying Si
3
N
4
layer. The bubbles may then lead to delamination of the Si
3
N
4
.
One typical sequence for depositing thin films using HDP-CVD has been to flow argon into the chamber, then strike an argon plasma at a pressure of approximately 40 millitorr. Once the plasma is struck, the pressure in the chamber is reduced to about 5 millitorr (for example, by opening a throttle valve) and then deposition gases are introduced to the chamber to deposit the film. Unfortunately, for the first few seconds of deposition by this method, the deposition gases do not flow evenly since each gas nozzle may be at a different pressure. Deposition starts immediately if the plasma is already on when deposition gases start to flow. Thus, the initial burst of gases with the plasma already on causes a non-uniform initial layer a few hundred angstroms in thickness. Non-uniformity of the film is usually determined by measuring the thickness of the film at a number of (e.g., 49) equidistant points and taking the width of the resulting thickness distribution at half of maximum. A thin film deposited as set forth above typically exhibits, within about 10 seconds of striking the plasma, a non-uniformity of about 4.75%. The non-uniformity might decrease to about 3.5% after about 30 seconds and slowly increase to about 4% after about 60 seconds.
This is not generally a problem with thick films (i.e., greater than a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

In situ deposition and integration of silicon nitride in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with In situ deposition and integration of silicon nitride in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and In situ deposition and integration of silicon nitride in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2848456

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.