High speed first pass yield report program and method

Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C716S030000, C716S030000, C716S030000, C716S030000, C714S038110, C709S213000, C700S082000, C345S215000, C707S793000

Reexamination Certificate

active

06546523

ABSTRACT:

FIELD OF INVENTION
The present invention relates generally to semiconductor manufacturing, and more particularly to a program and method for generating a semiconductor test first pass yield report.
BACKGROUND OF THE INVENTION
In the semiconductor industry there is a continuing trend toward high line rate production of integrated circuit products. In order to achieve high quantity production as well as quality assurance, there have been, and continue to be, efforts toward providing automated testing of production parts as well as detailed analysis of test results. The production of semiconductor integrated circuits typically involves a multi-step manufacturing process in which defects or errors may be introduced into a product at one or more steps in the process. Manufacturing and process engineers study the defect rates and product yields as well as the efficiency associated with such multi-step manufacturing processes and the individual steps therein, in order to determine where changes in a process may improve the product, reduce cost, save time, and the like. In particular, the initial or first run of a given manufacturing process needs to be carefully scrutinized so that any necessary adjustments may be made prior to approving the process for further production.
Another trend in the semiconductor industry is the reduction of feature sizes and an increase in device density in integrated circuit products. Such features may include the width and spacing of interconnecting lines and the surface geometry such as the corners and edges of various features. The requirement of small features with close spacing between adjacent features requires high resolution photo lithographic processes. In general, lithography refers to processes for pattern transfer between various media. It is a technique used for integrated circuit fabrication in which, for example, a silicon wafer is coated uniformly with a radiation-sensitive film (e.g, a photoresist), and an exposing source (such as ultraviolet light, x-rays, or an electron beam) illuminates selected areas of the film surface through an intervening master template (e.g., a mask or reticle) to generate a particular pattern. The exposed pattern on the photoresist film is then developed with a solvent called a developer which makes the exposed pattern either soluble or insoluble depending on the type of photoresist (i.e., positive or negative resist). The soluble portions of the resist are then removed, thus leaving a photoresist mask corresponding to the desired pattern on the silicon wafer for further processing.
In addition to reduced feature sizes and device density increases, the introduction of larger and larger wafers makes defects in a single wafer potentially more costly than that of a smaller wafer. Thus, as more components may be included within a given high device density semiconductor wafer, and as the size of the wafers increases, the detection of manufacturing process defects becomes more critical. Accordingly, various inspection tools, such as those commercially available from KLA-Tencor, Orbot, and Inspex, have been developed to map and record wafer surface features and other defects. The timely and thorough analysis of test data obtained through such inspection equipment is important for quality assurance as well as for achieving and maintaining high production rates for such high density semiconductor wafers.
Various testing instruments and equipment are typically employed in the manufacture of semiconductor devices, some of which may be made by different vendors. Each piece of test equipment makes measurements of specific features or performance indicia in the manufactured devices. For example, test equipment may be used to selectively verify shorts and opens between various nodes in an integrated circuit device. The correlation of the measured shorts and opens in a given die or device within a semiconductor wafer with those of a known good device may be used to indicate whether a device or circuit under test is defective. Where a batch of such devices is processed according to a multi-step manufacturing process, the yield of acceptable products may be advantageously monitored by production personnel in order to make necessary adjustments in one or more steps in the process in order to minimizing defects and down time.
Where a new or modified process is employed for the first time, the yield results may be closely scrutinized. However, the gathering of such first pass yield result data, and the sorting of such into useable form for engineering analysis takes time, during which the process may be continued (potentially at the risk of producing further defects), or the process may be interrupted pending data analysis. Thus, timely gathering, assembly, sorting, formatting, and calculation of such information is desirable. Heretofore, these tasks have been largely performed manually. For instance, process and manufacturing engineering personnel typically download individual sets of raw data from various test equipment into a spreadsheet computer software application. Thereafter, unwanted data is manually deleted, and sorting, reformatting, and computations are performed in order to present the yield results in a useable form for engineering analysis. Due to the increased cost of manufacturing down time, as well as the increased cost of high density semiconductor wafer defects, there remains a need for improved methods and systems for expeditiously generating yield reports.
SUMMARY OF THE INVENTION
The present invention provides a software macro or program and methodology for automated generation of yield reports. The invention finds particular utility in association with the manufacture and testing of semiconductor integrated circuits, although other applications are possible within the scope of the invention. The invention further includes a computer system for generating a yield report. According to one aspect of the invention, there is provided a method of generating a semiconductor manufacturing test first pass yield report, which comprises obtaining raw data from one or more workstream databases into a spreadsheet software application in a computer system, executing a software macro for formatting and sorting the raw data, as well as calculating final yield results, and generating a yield report including the calculated final yield data. The method may further comprise deleting data not required for generating the yield report, and calculating percentage of opens and shorts data by package, wherein generating a first pass yield report may further include using the calculated percentage of opens and shorts data.
According to another aspect of the invention, the macro may include computer-executable instructions for formatting the raw data, sorting the formatted data according to type and/or category, deleting data not required for generating the yield report, and sorting the remaining data according to device package type using the software macro. In addition, computer-executable instructions may be provided for creating at least one worksheet in the spreadsheet software application according to device package type using the software macro, calculating final yield data by package, and calculating percentage of opens and shorts data by package using the software macro. The data may be downloaded from one or more databases via a workstream server, and the deleted data may include quality assurance lot information, reliability lot information, returned lot information, correlation summary information, and unwanted test type information.
In accordance with still another aspect of the invention, there is provided a computer system for generating a semiconductor manufacturing test first pass yield report, which includes a spreadsheet software application, means for obtaining data from a workstream database, and a software macro having computer-executable instructions for formatting and sorting the data as well as calculating yield results.
Yet another aspect of the invention includes a software macro for generating a semiconduc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High speed first pass yield report program and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High speed first pass yield report program and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High speed first pass yield report program and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3077536

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.