Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate
Reexamination Certificate
2004-01-14
2004-10-26
Tsai, H. Jey (Department: 2812)
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
Having insulated gate
C438S213000, C438S222000
Reexamination Certificate
active
06808971
ABSTRACT:
TECHNICAL FIELD
The invention pertains to complementary metal oxide semiconductor (CMOS) inverter constructions, such as, for example, inverter constructions comprising semiconductor-on-insulator (SOI) thin film transistor devices. In exemplary aspects the invention pertains to computer systems utilizing CMOS inverter constructions.
BACKGROUND OF THE INVENTION
SOI technology differs from traditional bulk semiconductor technologies in that the active semiconductor material of SOI technologies is typically much thinner than that utilized in bulk technologies. The active semiconductor material of SOI technologies will typically be formed as a thin film over an insulating material (typically oxide), with exemplary thicknesses of the semiconductor film being less than or equal to 2000 Å. In contrast, bulk semiconductor material will typically have a thickness of at least about 200 microns. The thin semiconductor of SOI technology can allow higher performance and lower power consumption to be achieved in integrated circuits than can be achieved with similar circuits utilizing bulk materials.
An exemplary integrated circuit device that can be formed utilizing SOI technologies is a so-called thin film transistor (TFT), with the term “thin film” referring to the thin semiconductor film of the SOI construction. In particular aspects, the semiconductor material of the SOI construction can be silicon, and in such aspects the TFTs can be fabricated using recrystallized amorphous silicon or polycrystalline silicon. The silicon can be supported by an electrically insulative material (such as silicon dioxide), which in turn is supported by an appropriate substrate. Exemplary substrate materials include glass, bulk silicon and metal-oxides (such as, for example, Al
2
O
3
). If the semiconductor material comprises silicon, the term SOI is occasionally utilized to refer to a silicon-on-insulator construction, rather than the more general concept of a semiconductor-on-insulator construction. However, it is to be understood that in the context of this disclosure the term SOI refers to semiconductor-on-insulator constructions. Accordingly, the semiconductor material of an SOI construction referred to in the context of this disclosure can comprise other semiconductive materials in addition to, or alternatively to, silicon; including, for example, germanium.
A problem associated with conventional TFT constructions is that grain boundaries and defects can limit carrier mobilities. Accordingly, carrier mobilities are frequently nearly an order of magnitude lower than they would be in bulk semiconductor devices. High voltage (and therefore high power consumption), and large areas are utilized for the TFTs, and the TFTs exhibit limited performance. TFTs thus have limited commercial application and currently are utilized primarily for large area electronics.
Various efforts have been made to improve carrier mobility of TFTs. Some improvement is obtained for devices in which silicon is the semiconductor material by utilizing a thermal anneal for grain growth following silicon ion implantation and hydrogen passivation of grain boundaries (see, for example, Yamauchi, N. et al., “Drastically Improved Performance in Poly-Si TFTs with Channel Dimensions Comparable to Grain Size”, IEDM Tech. Digest, 1989, pp. 353-356). Improvements have also been made in devices in which a combination of silicon and germanium is the semiconductor material by optimizing the germanium and hydrogen content of silicon/germanium films (see, for example, King, T. J. et al, “A Low-Temperature (<=550° C. ) Silicon-Germanium MOS TFT Technology for Large-Area Electronics”, IEDM Tech. Digest, 1991, pp. 567-570).
Investigations have shown that nucleation, direction of solidification, and grain growth of silicon crystals can be controlled selectively and preferentially by excimer laser annealing, as well as by lateral scanning continuous wave laser irradiation/anneal for recrystallization (see, for example, Kuriyama, H. et al., “High Mobility Poly-Si TFT by a New Excimer Laser Annealing Method for Large Area Electronics”, IEDM Tech. Digest, 1991, pp. 563-566; Jeon, J. H. et al., “A New Poly-Si TFT with Selectively Doped Channel Fabricated by Novel Excimer Laser Annealing”, IEDM Tech. Digest, 2000, pp. 213-216; Kim, C. H. et al., “A New High -Performance Poly-Si TFT by Simple Excimer Laser Annealing on Selectively Floating a Si Layer”, IEDM Tech. Digest, 2001, pp. 753-756; Hara, A. et al, “Selective Single-Crystalline-Silicon Growth at the Pre-Defined Active Regions of TFTs on a Glass by a Scanning CW Layer Irradiation”, IEDM Tech. Digest, 2000, pp. 209-212; and Hara, A. et al., “High Performance Poly-Si TFTs on a Glass by a Stable Scanning CW Laser Lateral Crystallization”, IEDM Tech. Digest, 2001, pp. 747-750). Such techniques have allowed relatively defect-free large crystals to be grown, with resulting TFTs shown to exhibit carrier mobility over 300 cm
2
/V-second.
Another technique which has shown promise for improving carrier mobility is metal-induced lateral recrystallization (MILC), which can be utilized in conjunction with an appropriate high temperature anneal (see, for example, Jagar, S. et al., “Single Grain TFT with SOI CMOS Performance Formed by Metal-Induced-Lateral-Crystallization”, IEDM Tech. Digest, 1999, p. 293-296; and Gu, J. et al., “High Performance Sub-100 nm Si TFT by Pattern-Controlled Crystallization of Thin Channel Layer and High Temperature Annealing”, DRC Conference Digest, 2002, pp. 49-50). A suitable post-recrystallization anneal for improving the film quality within silicon recrystallized by MILC is accomplished by exposing recrystallized material to a temperature of from about 850° C. to about 900° C. under an inert ambient (with a suitable ambient comprising, for example, N
2
). MILC can allow nearly single crystal silicon grains to be formed in predefined amorphous-silicon islands for device channel regions. Nickel-induced-lateral-recrystallization can allow device properties to approach those of single crystal silicon.
The carrier mobility of a transistor channel region can be significantly enhanced if the channel region is made of a semiconductor material having a strained crystalline lattice (such as, for example, a silicon/germanium material having a strained lattice, or a silicon material having a strained lattice) formed over a semiconductor material having a relaxed lattice (such as, for example, a silicon/germanium material having a relaxed crystalline lattice). (See, for example, Rim, K. et al., “Strained Si NMOSFETs for High Performance CMOS Technology”, VLSI Tech. Digest, 2001, p. 59-60; Cheng, Z. et al., “SiGe-On-Insulator (SGOI) Substrate Preparation and MOSFET Fabrication for Electron Mobility Evaluation”2001 IEEE SOI Conference Digest, Oct. 2001, pp. 13-14; Huang, L. J. et al., “Carrier Mobility Enhancement in Strained Si-on-Insulator Fabricated by Wafer Bonding”, VLSI Tech. Digest, 2001, pp. 57-58; and Mizuno, T. et al., “High Performance CMOS Operation of Strained-SOI MOSFETs Using Thin Film SiGe-on-Insulator Substrate”, VLSI Tech. Digest, 2002, p. 106-107.)
The terms “relaxed crystalline lattice” and “strained crystalline lattice” are utilized to refer to crystalline lattices which are within a defined lattice configuration for the semiconductor material, or perturbed from the defined lattice configuration, respectively. In applications in which the relaxed lattice material comprises silicon/germanium having a germanium concentration of from 10% to 60%, mobility enhancements of 110% for electrons and 60-80% for holes can be accomplished by utilizing a strained lattice material in combination with the relaxed lattice material (see for example, Rim, K. et al., “Characteristics and Device Design of Sub-100 nm Strained SiN and PMOSFETs”, VLSI Tech. Digest, 2002, 00. 98-99; and Huang, L. J. et al., “Carrier Mobility Enhancement in Strained Si-on-Insulator Fabricated by Wafer Bonding”, VLSI Tech. Digest, 2001, pp. 57-58).
Performance enhancements of standard field effect transist
Micro)n Technology, Inc.
Tsai H. Jey
Wells St. John P.S.
LandOfFree
High performance three-dimensional TFT-based CMOS inverters,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High performance three-dimensional TFT-based CMOS inverters,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High performance three-dimensional TFT-based CMOS inverters,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3286630