High density capping layers with improved adhesion to copper...

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S225000, C438S235000, C438S192000

Reexamination Certificate

active

06225210

ABSTRACT:

TECHNICAL FIELD
The present invention relates to copper (Cu) and/or Cu alloy metallization in semiconductor devices. The present invention is applicable to manufacturing high speed integrated circuits having submicron design features and high conductivity interconnect structures.
BACKGROUND ART
The escalating requirements for high density and performance associated with ultra large scale integration semiconductor wiring require responsive changes in interconnection technology. Such escalating requirements have been found difficult to satisfy in terms of providing a low RC (resistance capacitance) interconnect pattern, particularly wherein submicron vias, contacts and trenches have high aspect ratios imposed by miniaturization.
Conventional semiconductor devices comprise a semiconductor substrate, typically doped monocrystalline silicon, and a plurality of sequentially formed dielectric interlayers and conductive patterns. An integrated circuit is formed containing a plurality of conductive patterns comprising conductive lines separated by interwiring spacings, and a plurality of interconnect lines, such as bus lines, bit lines, word lines and logic interconnect lines. Typically, the conductive patterns on different layers, i.e., upper and lower layers, are electrically connected by a conductive plug filling a via hole, while a conductive plug filling a contact hole establishes electrical contact with an active region on a semiconductor substrate, such as a source/drain region. Conductive lines are formed in trenches which typically extend substantially horizontal with respect to the semiconductor substrate. Semiconductor “chips” comprising five or more levels of metallization are becoming more prevalent as device geometries shrink to submicron levels.
A conductive plug filling a via hole is typically formed by depositing an interdielectric layer on a conductive layer comprising at least one conductive pattern, forming an opening through the interdielectric layer by conventional photolithographic and etching techniques, and filling the opening with a conductive material, such as tungsten (W). Excess conductive material on the surface of the dielectric interlayer is typically removed by chemical mechanical polishing (CMP). One such method is known as damascene and basically involves forming an opening in the dielectric interlayer and filling the opening with a metal. Dual damascene techniques involve forming an opening comprising a lower contact or via hole section in communication with an upper trench section, which opening is filled with a conductive material, typically a metal, to simultaneously form a conductive plug in electrical contact with a conductive line.
High performance microprocessor applications require rapid speed of semiconductor circuitry. The control speed of semiconductor circuitry varies inversely with the resistance and capacitance of the interconnection pattern. As integrated circuits become more complex and feature sizes and spacings become smaller, the integrated circuit speed becomes less dependent upon the transistor itself and more dependent upon the interconnection pattern. Miniaturization demands long interconnects having small contacts and small cross-sections. As the length of metal interconnects increases and cross-sectional areas and distances between interconnects decrease, the RC delay caused by the interconnect wiring increases. If the interconnection node is routed over a considerable distance, e.g., hundreds of microns or more as in submicron technologies, the interconnection capacitance limits the circuit node capacitance loading and, hence, the circuit speed. As design rules are reduced to about 0.18 micron and below, the rejection rate due to integrated circuit speed delays significantly increases manufacturing costs. Moreover, as line widths decrease electrical conductivity and electromigration resistance become increasingly important.
Cu and Cu alloys have received considerable attention as a candidate for replacing Al in interconnect metallizations. Cu is relatively inexpensive, easy to process, and has a lower resistivity than Al. In addition, Cu has improved electrical properties vis-a-vis W, making Cu a desirable metal for use as a conductive plug as well as conductive wiring.
An approach to forming Cu plugs and wiring comprises the use of damascene structures employing CMP, as in Teong, U.S. Pat. No. 5,693,563. However, due to Cu diffusion through interdielectric layer materials, such as silicon dioxide, Cu interconnect structures must be encapsulated by a diffusion barrier layer. Typical diffusion barrier metals include tantalum (Ta), tantalum nitride (TaN), titanium nitride (TiN), titanium-tungsten (TiW), tungsten (W), tungsten nitride (WN), Ti-TiN, titanium silicon nitride (TiSiN), tungsten silicon nitride (WSiN), tantalum silicon nitride (TaSiN) and silicon nitride for encapsulating Cu. The use of such barrier materials to encapsulate Cu is not limited to the interface between Cu and the dielectric interlayer, but includes interfaces with other metals as well.
There are additional problems attendant upon conventional Cu interconnect methodology employing a diffusion barrier layer (or capping layer). For example, conventional practices comprise forming a damascene opening in an interdielectric layer, depositing a barrier layer such as TaN, lining the opening and on the surface of the interdielectric layer, filling the opening with Cu or a Cu alloy layer, CMP, and forming a capping layer on the exposed surface of the Cu or Cu alloy It was found, however, that capping layers, such as silicon nitride, deposited by plasma enhanced chemical vapor deposition (PECVD), exhibit poor adhesion to the Cu or Cu alloy surface. Consequently, the capping layer is vulnerable to removal, as by peeling due to scratching or stresses resulting from subsequent deposition of layers. As a result, the Cu or Cu alloy is not entirely encapsulated and Cu diffusion occurs, thereby adversely affecting device performance and decreasing the electromigration resistance of the Cu or Cu alloy interconnect member Moreover, conventional PECVD silicon nitride capping layers have a density of about 2.62 g/cm
3
and, hence, not particularly suitable for use as an etch stop layer during formation of subsequent metallization levels.
In co-pending application Ser. No. 09/112,472 filed on Jul. 9, 1998, the adhesion problem of a PECVD silicon nitride capping layer to a Cu interconnect was addressed by initially treating the exposed surface with an hydrogen-containing plasma, forming a copper silicide layer on the treated surface and depositing a silicon nitride capping layer thereon. In co-pending application Ser. No. 09/131,872 filed on Aug. 10, 1998, the adhesion problem of a silicon nitride capping layer to a Cu interconnect is addressed by treating the exposed surface with an ammonia-containing plasma and depositing a silicon nitride capping layer thereon.
As design rules extend deeper into the submicron range, e.g., about 0.18 micron and under, the reliability of the interconnect pattern becomes particularly critical. Accordingly, the adhesion of capping layers to Cu interconnects and accuracy of interconnects for subsequent vertical metallization levels require even greater reliability. Accordingly, there exists a need for methodology enabling the formation of encapsulated Cu and Cu alloy interconnect members for vertical metallization levels with greater accuracy and reliability.
DISCLOSURE OF THE INVENTION
An advantage of the present invention is a method of manufacturing a semiconductor device having highly reliable Cu or Cu alloy interconnect members.
Another advantage of the present invention is a method of manufacturing a semiconductor device comprising a Cu or Cu alloy interconnect member having a dense silicon nitride capping layer tightly adhered thereto.
Additional advantages and other features of the present invention will be set forth in the description which follows and, in part, will become apparent to those having ordinary skill in the art upon exami

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High density capping layers with improved adhesion to copper... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High density capping layers with improved adhesion to copper..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High density capping layers with improved adhesion to copper... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2570612

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.