Graded composition gate insulators to reduce tunneling...

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S324000, C257S321000, C257S317000, C257S316000, C257S315000, C257S314000

Reexamination Certificate

active

06586797

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to integrated circuits, and in particular to graded composition gate insulators to reduce tunneling barriers in Flash memory devices.
BACKGROUND OF THE INVENTION
Field-effect transistors (FETs) are typically produced using a standard complementary metal-oxide-semiconductor (CMOS) integrated circuit fabrication process. As is well known in the art, such a process allows a high degree of integration such that a high circuit density can be obtained with the use of relatively few well-established masking and processing steps. A standard CMOS process is typically used to fabricate FETs that each have a gate electrode that is composed of n-type conductively doped polycrystalline silicon (polysilicon) material or other conductive materials.
Field effect transistors (FETs) are used in many different types of memory devices, including EPROM, EEPROM, EAPROM, DRAM and flash memory devices. They are used as both access transistors, and as memory elements in flash memory devices. In these applications, the gate is electrically isolated from other conductive areas of the transistor by an oxide layer. A drawback with FETs having grown oxide insulators is manifested in the use of Fowler-Nordheim tunneling to implement nonvolatile storage devices, such as in electrically erasable and programmable read only memories (EEPROMs). EEPROM memory cells typically use CMOS floating gate FETs. A floating gate FET typically includes a floating (electrically isolated) gate that controls conduction between source and drain regions of the FET. In such memory cells, data is represented by charge transfer on the floating gates. Fowler-Nordheim tunneling is one method that is used to store charge on the floating gates during a write operation and to remove charge from the polysilicon floating gate during an erase operation. The high tunneling voltage of grown oxides used to provide such isolation increases the time needed to store charge on the floating gates during the write operation and the time needed to remove charge from the polysilicon floating gate during the erase operation. This is particularly problematic for “flash” EEPROMs, which have an architecture that allows the simultaneous erasure of many floating gate transistor memory cells. Since more charge must be removed from the many floating gates in a flash EEPROM, even longer erasure times are needed to accomplish this simultaneous erasure. There is a need in the art to obtain floating gate transistors allowing faster storage and erasure, such as for use in flash EEPROMs.
Many gate insulators have been tried, such as grown oxides, CVD (chemical vapor deposition) oxides, and deposited layers of silicon nitride, aluminum oxide, tantalum oxide, and titanium oxide with or without grown oxides underneath. The only commonly used gate insulator at the present time is thermally grown silicon oxide. If other insulators are deposited directly on the silicon, high surface state densities result. Composite layers of different insulators are first grown and then deposited, such as oxide-CVD oxide or oxide-CVD nitride combinations. If composite insulators are used, charging at the interface between the insulators results due to trap states at this interface, a bandgap discontinuity, and/or differences in conductivity of the films.
Silicon dioxide is an insulator with a relative dielectric constant 3.9, energy gap ~9 eV, and electron affinity (&khgr;) of 0.9 eV. By comparison, the energy gap and electron affinity for the semiconductor silicon are 1.1 eV and 4.1 eV, respectively. In a conventional flash memory, electrons stored on the polysilicon floating gate see a large tunneling barrier of about 3.2 eV.
FIG. 1
shows the conventional large 3.2 eV barrier for tunneling erase in flash memory devices. The current during erase is an exponential function of the barrier height and thickness (S. M. Sze, “Physics of semiconductor devices,” Wiley, N.Y., 1981, p. 403). The large 3.2 eV tunneling barrier is the difference between the electron affinities &khgr; of silicon (4.1 eV) and SiO
2
(0.9 eV). See FIG.
4
. This is a relative large barrier which requires high applied electric fields for electron injection. Even with high applied fields, the erase times are long. The high fields additionally degrade device yield and contribute to various reliability problems including premature gate insulator breakdowns. Such problems stem from the fact that polysilicon gate conductors in combination with an SiO
2
and/or Si
3
N
4
dielectrics produces a large barrier height for charge injection and thus do not constitute an optimum combination of materials for flash memories.
Other approaches to resolve the above described problems include; the use of different floating gate materials, e.g. SiC, SiOC, GaN, and GaAIN, which exhibit a lower work function (see FIG.
2
A), the use of structured surfaces which increase the localized electric fields (see FIG.
2
B), and amorphous SiC gate insulators with larger electron affinity, &khgr;, to increase the tunneling probability and reduce erase time (see FIG.
2
C).
One example of the use of different floating gate (
FIG. 2A
) materials is provided in U.S. Pat. No. 5,801,401 by L. Forbes, entitled “FLASH MEMORY WITH MICROCRYSTALLINE SILICON CARBIDE AS THE FLOATING GATE STRUCTURE.” Another example is provided in U.S. Pat. No. 5,852,306 by L. Forbes, entitled “FLASH MEMORY WITH NANOCRYSTALLINE SILICON FILM AS THE FLOATING GATE.” Still further examples of this approach are provided in pending applications by L. Forbes and K. Ahn, entitled “DYNAMIC RANDOM ACCESS MEMORY OPERATION OF A FLASH MEMORY DEVICE WITH CHARGE STORAGE ON A LOW ELECTRON AFFINITY GaN OR GaAIN FLOATING GATE,” Ser. No. 08/908098, and “VARIABLE ELECTRON AFFINITY DIAMOND-LIKE COMPOUNDS FOR GATES IN SILICON CMOS MEMORIES AND IMAGING DEVICES,” Ser. No. 08/903452.
An example of the use of the structured surface approach (
FIG. 2B
) is provided in U.S. Pat. No. 5,981,350 by J. Geusic, L. Forbes, and K. Y. Ahn, entitled “DRAM CELLS WITH A STRUCTURE SURFACE USING A SELF STRUCTURED MASK.” Another example is provided in U.S. Pat. No. 6,025,627 by L. Forbes and J. Geusic, entitled “ATOMIC LAYER EXPITAXY GATE INSULATORS AND TEXTURED SURFACES FOR LOW VOLTAGE FLASH MEMORIES.”
Finally, an example of the use of amorphous SiC gate insulators (
FIG. 2C
) is provided in U.S. patent application Ser. No. 08/903453 by L. Forbes and K. Ahn, entitled “GATE INSULATOR FOR SILICON INTEGRATED CIRCUIT TECHNOLOGY BY THE CARBURIZATION OF SILICON.”
Still, there is a need for other improved gate insulators which provides a low tunneling barrier. There is a further need to reduce the tunneling time to speed up storage and retrieval of data in memory devices. There is yet a further need for a gate insulator with less charging at the interface between composite insulator layers. A further need exists to form gate insulators with low surface state densities.
SUMMARY OF THE INVENTION
The above mentioned problems with semiconductor memories and other problems are addressed by the present invention and will be understood by reading and studying the following specification. Systems and methods are provided which substantially reduce large barrier heights or energy problems by using dielectrics having suitably, adjustably lower barrier heights in contact with the polysilicon floating gate. Such adjustable barrier-heights of controlled thicknesses can be formed using SiO
x
and Si
x
C
y
O
z
dielectrics prepared according to the process as described herein.
This disclosure describes the use of the lower band gap and larger electron affinity dielectric materials silicon suboxide (SiO
x
with 1>x<2) and silicon oxycarbide (Si
x
C
y
O
z
) in combination with a SiO
2
to form composite dielectric flash memory gate insulators. Such structures will have lower effective tunneling barriers and consequently reduce device erase times, other factors being equal.
In one embodiment of the present invention, a flash memory cell is provided. The flash memory cell

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Graded composition gate insulators to reduce tunneling... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Graded composition gate insulators to reduce tunneling..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Graded composition gate insulators to reduce tunneling... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3049890

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.