Four F.sup.2 folded bit line DRAM cell structure having buried b

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

257306, 257334, H01L 27108

Patent

active

060722096

ABSTRACT:
A memory cell structure for a folded bit line memory array of a dynamic random access memory device includes buried bit and word lines, with the access transistors being formed as a vertical structure on the bit lines. Isolation trenches extend orthogonally to the bit lines between the access transistors of adjacent memory cells, and a pair of word lines are located in each of the isolation trenches. The word lines are oriented vertically widthwise in the trench and are adapted to gate alternate access transistors, so that both an active and a passing word line can be contained within each memory cell to provide a folded bit line architecture. The memory cell has a surface area that is approximately 4 F.sup.2, where F is a minimum feature size. Also disclosed are processes for fabricating the DRAM cell using bulk silicon or a silicon on insulator processing techniques.

REFERENCES:
patent: 4051354 (1977-09-01), Choate
patent: 4604162 (1986-08-01), Sobczak
patent: 4630088 (1986-12-01), Ogura et al.
patent: 4663831 (1987-05-01), Birrittella et al.
patent: 4673962 (1987-06-01), Chatterjee et al.
patent: 4761768 (1988-08-01), Turner et al.
patent: 4766569 (1988-08-01), Turner et al.
patent: 4920065 (1990-04-01), Chin et al.
patent: 4949138 (1990-08-01), Nishimura
patent: 4958318 (1990-09-01), Harari
patent: 4987089 (1991-01-01), Roberts
patent: 5001526 (1991-03-01), Gotou
patent: 5006909 (1991-04-01), Kosa
patent: 5017504 (1991-05-01), Nishimuro et al.
patent: 5021355 (1991-06-01), Dhong et al.
patent: 5028977 (1991-07-01), Kenneth et al.
patent: 5057896 (1991-10-01), Gotou
patent: 5072269 (1991-12-01), Hieda
patent: 5102817 (1992-04-01), Chatterjee et al.
patent: 5110752 (1992-05-01), Lu
patent: 5156987 (1992-10-01), Sandhu et al.
patent: 5177028 (1993-01-01), Manning
patent: 5177576 (1993-01-01), Kimura et al.
patent: 5202278 (1993-04-01), Mathews et al.
patent: 5208657 (1993-05-01), Chatterjee et al.
patent: 5216266 (1993-06-01), Ozaki
patent: 5223081 (1993-06-01), Doan
patent: 5266514 (1993-11-01), Tuan et al.
patent: 5276343 (1994-01-01), Kumagai et al.
patent: 5316962 (1994-05-01), Matsuo et al.
patent: 5320880 (1994-06-01), Sandhu et al.
patent: 5327380 (1994-07-01), Kersh, III et al.
patent: 5376575 (1994-12-01), Kim et al.
patent: 5391911 (1995-02-01), Beyer et al.
patent: 5392245 (1995-02-01), Manning
patent: 5393704 (1995-02-01), Huang et al.
patent: 5396093 (1995-03-01), Lu
patent: 5410169 (1995-04-01), Yamamoto et al.
patent: 5414287 (1995-05-01), Hong
patent: 5422499 (1995-06-01), Manning
patent: 5427972 (1995-06-01), Shimizu et al.
patent: 5438009 (1995-08-01), Yang et al.
patent: 5440158 (1995-08-01), Sung-Mu
patent: 5445986 (1995-08-01), Hirota
patent: 5460316 (1995-10-01), Hefele
patent: 5460988 (1995-10-01), Hong
patent: 5466625 (1995-11-01), Hsieh et al.
patent: 5483094 (1996-01-01), Sharma et al.
patent: 5483487 (1996-01-01), Sung-Mu
patent: 5492853 (1996-02-01), Jeng et al.
patent: 5495441 (1996-02-01), Hong
patent: 5497017 (1996-03-01), Gonzales
patent: 5504357 (1996-04-01), Kim et al.
patent: 5508219 (1996-04-01), Bronner et al.
patent: 5508542 (1996-04-01), Geiss et al.
patent: 5519236 (1996-05-01), Ozaki
patent: 5528062 (1996-06-01), Hsieh et al.
patent: 5574299 (1996-11-01), Kim
patent: 5593912 (1997-01-01), Rajeevakumar
patent: 5616934 (1997-04-01), Dennison et al.
patent: 5627390 (1997-05-01), Maeda et al.
patent: 5640342 (1997-06-01), Gonzalez
patent: 5644540 (1997-07-01), Manning
patent: 5646900 (1997-07-01), Tsukude et al.
patent: 5691230 (1997-11-01), Forbes
patent: 5753947 (1998-05-01), Gonzalez
Adler, E., et al., "The Evolution of IBM CMOS DRAM Technology", IBM Journal of Research and Development, 39, 167-188, (Jan./Mar. 1995).
Asai, S., et al., "Technology Challenges for Integration Near and Below 0.1 .mu.m", Proceedings of the IEEE, 85, Special Issue on Nanometer-Scale Science & Technology, 505-520, (Apr. 1997).
Banerjee, S.K., et al., "Characterization of Trench Transistors for 3-D Memories", 1986 Symposium on VLSI Technology, Digest of Technical Papers, San Diego, CA, 79-80, (May 28-30, 1986).
Blalock, T.N., et al., "A High-Speed Sensing Scheme for 1T Dynamic Ram's Utilizing the Clamped Bit-Line Sense Amplifier", IEEE Journal of Solid-State Circuits, 27, 618-625, (Apr. 1992).
Bomchil, G., et al., "Porous Silicon: The Material and its Applications in Silicon-On-Insulator Technologies", Applied Surface Science, 41/42, 604-613, (1989).
Burnett, D., et al., "Implications of Fundamental Threshold Voltage Variations for High-Density SRAM and Logic Circuits", 1994 Symposium on VLSI Technology, Digest of Technical Papers, Honolulu, HI, 15-16, (Jun. 4-7, 1994).
Burnett, D., et al., "Statistical Threshold-Voltage Variation and its Impact on Supply-Voltage Scaling", SPIE, 2636, 83-90, (1995).
Chen, M.J., et al., "Back-Gate Forward Bias Method for Low-Voltage CMOS Digital Cicuits", IEEE Transactions on Electron Devices, 43, 904-909, (Jun. 1986).
Chen, M.J., et al., "Optimizing the Match in Weakly Inverted MOSFET's by Gated Lateral Bipolar Action", IEEE Transactions on Electron Devices, 43, 766-773, (May 1996).
Chung, I.Y., et al., "A New SOI Inverter for Low Power Applications", Proceedings of the 1996 IEEE Internationaol SOI Conference, Sanibel Island, FL, 20-21, (Sep. 30-Oct. 3, 1996).
De, V.K., et al., "Random MOSFET Parameter Fluctuation Limits to Gigascale Integration (GSI)", 1996 Symposium on VLSI Technology, Digest of Technical Papers, Honolulu, HI, 198-199, (Jun. 11-13, 1996).
Denton, J.P., et al., "Fully Depleted Dual-Gated Thin-Film SOI P-MOSFET's Fabricated in SOI Islands with an Isolated Buried Polysilicon Backgate", IEEE Electron Device Letters, 17, 509-511, (Nov. 1996).
Fong, Y., et al., "Oxides Grown on Textured Single-Crystal Silicon--Dependence on Process and Application in EEPROMs", IEEE Transactions on Electron Devices, 37, 583-590, (Mar. 1990).
Fuse, T., et al., "A 0.5V 200MHz 1-Stage 32b ALU Using a Body Bias Controlled SOI Pass-Gate Logic", 1997 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 286-287, (1997).
Gong, S., et al., "Techniques for Reducing Switching Noise in High Speed Digital Systems", Proceedings of the 8th Annual IEEE International ASIC Conference and Exhibit, 21-24, (1995).
Hao, M.Y., et al., "Electrical Characteristics of Oxynitrides Grown on Textured Single-Crystal Silicon", Appl. Phys. Lett., 60, 445-447, (Jan. 1992).
Harada, M., et al., "Suppression of Threshold Voltage Variation in MTCMOS/SIMOX Circuit Operating Below 0.5 V", 1996 Symposium on VLSI Technology, Digest of Technical Papers, Honolulu, HI, 96-97, (Jun. 11-13, 1996).
Hisamoto, D., et al., "A New Stacked Cell Structure for Giga-Bit DRAMs using Vertical Ultra-Thin SOI (DELTA) MOSFETs", 1991 IEEE International Electron Devices Meeting, Technical Digest, Washington, D.C., 959-961, (Dec. 8-11, 1991).
Hodges, D.A., et al., "MOS Decoders", In: Analysis and Design of Digital Integrated Circuits, 2nd Edition, McGraw-Hill Book Co., New York, 354-357, (1988).
Holman, W.T., et al., "A Compact Low Noise Operational Amplifier for a 1.2 .mu.m Digital CMOS Technology", IEEE Journal of Solid-State Circuits, 30, 710-714, (Jun. 1995).
Hu, G., et al., "Will Flash Memory Replace Hard Disk Drive?", 1994 IEEE International Electron Device Meeting, Panel Discussion, Session 24, Outline, 1 p., (Dec. 13, 1994).
Huang, W.L., et al., "TFSOI Complementary BiCMOS Technology for Low Power Applications", IEEE Transactions on Electron Devices, 42, 506-512, (Mar. 1995).
Jun, Y.K., et al., "The Fabrication and Electrical Properties of Modulated Stacked Capacitor for Advanced DRAM Applications", IEEE Electron Device Letters, 13, 430-432, (Aug. 1992).
Jung, T.S., et al., "A 117 mm.sup.2 3.3-V Only 128 Mb Multilevel NAND Flash Memory for Mass Storage Applications", IEEE Journal of Solid-State Circuits, 31, 1575-1582, (Nov. 1996).
Kim, Y.S., et al., "A Study on Pyrolysis DMEAA for Selective Deposition of Aluminum", In: Advanced Metallization and Interconnect Systems for ULSI Applications in 1995, R.C. Ellwanger, et al., (eds.), Materials Research Society, Pi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Four F.sup.2 folded bit line DRAM cell structure having buried b does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Four F.sup.2 folded bit line DRAM cell structure having buried b, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Four F.sup.2 folded bit line DRAM cell structure having buried b will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2215446

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.