Force scanning probe microscope

Electrical generator or motor structure – Non-dynamoelectric – Piezoelectric elements and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S105000, C073S862510, C073S862541, C310S369000

Reexamination Certificate

active

06677697

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to probe microscopes, and more particularly, a probe microscope (PM) apparatus and method for sensing tip-sample interaction forces.
2. Description of Related Art
Developments in nanotechnology have enabled mechanical experiments on a broad range of samples including single molecules, such that fundamental molecular interactions can be studied directly. The mechanical properties of biological molecules, in particular, such as actin filaments and DNA has lead to the development of a range of instrumentation for conducting these studies. In this regard, systems and methods differing in force and dynamic ranges currently being used include magnetic beads, optical tweezers, glass microneedles, biomembrane force probes (BFP), scanning probe microscopy (SPM), and atomic force microscopy (AFM).
With a force sensitivity on the order of a few pico-Newtons (pN=10
−12
N), an AFM is an excellent tool for probing fundamental force interactions between surfaces. AFM has been used to probe the nature of attractive van der Waals and attractive/repulsive electrostatic forces between systems such as metal probes and insulating mica surfaces, and insulating probes on insulating and conducting samples with materials such as silicon nitride, diamond, alumina, mica, glass and graphite. Other applications include the study of adhesion, friction, and wear, including the formation or suppression of capillary condensation on hydrophilic silicon, amorphous carbon and lubricated SiO
2
surfaces.
More particularly, for biological molecules, force is often an important functional and structural parameter. Biological processes such as DNA replication, protein synthesis, drug interaction, to name a few, are largely governed by intermolecular forces. However, these forces are extremely small. With its sensitivity in the pico-Newton scale, the SPM has been employed to analyze these interactions. In this regard, SPMs typically are used to generate force curves that provide particularly useful information for analyzing very small samples.
The knowledge regarding the relation between structure, function and force is evolving and therefore single molecule force spectroscopy, particularly using SPM, has become a versatile analytical tool for structural and functional investigation of single bio-molecules in their native environments. For example, force spectroscopy by SPM has been used to measure the binding forces of different receptor-ligand systems, observe reversible unfolding of protein domains, and investigate polysaccharide elasticity at the level of inter-atomic bond flips. Moreover, molecular motors and their function, DNA mechanics and the operation of DNA-binding agents such as proteins in drugs have also been observed. Further, the SPM is capable of making nano-mechanical measurements (such as elasticity) on biological specimens, thus providing data relative to subjects such as cellular and protein dynamics.
Another main application of making AFM force measurements is in materials science where the study of mechanical properties of nano-scale thin films and clusters is of interest. For example, as microstructures such as integrated circuits continue to shrink, exploring the mechanical behavior of thin films from known properties of the materials becomes increasingly inaccurate. Therefore, continuing demand for faster computers and larger capacity memory and storage devices places increasing importance on understanding nano-scale mechanics of metals and other commonly used materials.
PMs, including instruments such as the atomic force microscope (AFM), are devices that typically use a sharp tip and low forces to characterize the surface of a sample down to atomic dimensions. Generally, AFMs include a probe having a tip that is introduced to a surface of a sample to detect changes in the characteristics of the sample. In this case, relative scanning movement between the tip and the sample is provided so that surface characteristic data can be acquired over a particular region of the sample, and a corresponding map of the sample surface can be generated. However, PMs also include devices such as molecular force probes (MFPs) that similarly use a probe to characterize sample properties but do not scan.
In one application of AFM, either the sample or the probe is translated up and down relatively perpendicularly to the surface of the sample in response to a signal related to the motion of the cantilever of the probe as it is scanned across the surface to maintain a particular imaging parameter (for example, to maintain a set-point oscillation amplitude). In this way, the feedback data associated with this vertical motion can be stored and then used to construct an image of the sample surface corresponding to the sample characteristic being measured, e.g., surface topography. Other types of images are generated directly from the detection of the cantilever motion or a modified version of that signal (i.e., deflection, amplitude, phase, friction, etc.), and are thus not strictly topographical images.
In addition to surface characteristic imaging such as topographical imaging, the AFM can probe nano-mechanical and other fundamental properties of samples and their surfaces. Again, AFM applications extend into applications ranging from measuring colloidal forces to monitoring enzymatic activity in individual proteins to analyzing DNA mechanics.
When measuring biological samples, it is useful to measure, for example, the stiffness of the sample; in one example, to separate salt crystals from DNA or to separate the DNA from a hard surface. in U.S. Pat. No. 5,224,376, assigned to the assignee of the present invention, an atomic force microscope is described in which the system can map both the local stiffness (force spectroscopy) and the topography of a sample. In the preferred implementation, a stiffness map of the sample is obtained by modulating the force between the tip and sample during a scan by modulating the vertical position of the sample while keeping the average force between the tip and the sample constant. The bending of the cantilever, which is a measure of the force on the tip, is measured by an optical detector that senses the deflection of a light beam reflected from the back of the cantilever. In a simple example, the AFM and force spectroscopy apparatus of this patent has been used to study DNA laying on a glass surface. Modulating the force and then imaging the stiffness of the sample has the advantage that a surface such as glass, which has a rough topographic image, will have a flat stiffness image, permitting soft molecules on it such as DNA to be readily imaged.
Notably, a key element of the probe microscope is its microscopic sensor, i.e., the probe. The probe includes a microcantilever, the design and fabrication of which is well-known in the field, which is typically formed out of silicon, silicon nitride, or glass, and has typical dimensions in the range of 10-1000 microns in length and 0.1-10 microns in thickness. The probe may also include a “tip,” which, particularly in AFM, is typically a sharp projection near the free end of the cantilever extending toward the sample. In the more general field of probe microscopy, the tip may be absent or of some other shape and size in order to control the particular type, magnitude, or geometry of the tip-sample interaction or to provide greater access to chemically modify the tip surface.
The second key element of a probe microscope is a scanning mechanism (“the scanner”), which produces relative motion between the probe and the sample. It is well-known by those in the field that such scanners may move either the tip relative to the sample, the sample relative to the tip, or some combination of both. Moreover, probe microscopes include both scanning probe microscopes in which the scanner typically produces motion in three substantially orthogonal directions, and instruments with scanners that produce motion in fewer than three substantially orthog

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Force scanning probe microscope does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Force scanning probe microscope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Force scanning probe microscope will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3238390

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.