Fault tolerant voltage regulator module circuit for...

Electrical computers and digital processing systems: support – Computer power control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S340000, C714S014000, C307S086000

Reexamination Certificate

active

06189107

ABSTRACT:

CLAIM OF PRIORITY
This application makes reference to, incorporates the same herein, and claims all benefits accruing under 35 U.S.C. §119 from an application for A FAULT TOLERANT VOLTAGE REGULATOR MODULE CIRCUIT FOR SUPPLYING CORE VOLTAGE AND CACHE VOLTAGE TO INTEL PROCESSOR earlier filed in the Korean Industr Property Office on Dec. 29, 1997 and there duly assigned Ser. No. 76539/1997.
BACKGROUND OF THE INVENTION
1. Filed of the Invention
This invention relates to a voltage regulator module (VRM) circuit for a processor and in particular to a VRM circuit having a fault tolerant stand-by voltage regulator module for supplying power to a processor in the event that main VRMs fail. The stand-by VRM is coupled through diodes to the main VRMs.
2. Description of the Related Art
An earlier voltage regulator module for a processor will be explained as follows. The earlier processor converts +12 volts or +5 volts to comply with the processor using a VRM and provides a CPU core voltage and L2 cache voltage.
Processors more advanced than INTEL Pentium II microprocessors need two VR because the processor core voltage level and L2 cache voltage level are different. When the voltage regulator modules supplying voltages supply a low voltage or become inoperative because of the high consumption power of the microprocessor, the processor also fails or becomes inoperative.
Afterward, because the processor has no back-up devices, the system is down if the processor is a single microprocessor and the system performance is reduced, if a multi-processor system.
Also, a microprocessor more advanced than INTEL Pentium II microprocessors need two voltage regulator modules per processor, so that the multi-processor system depends on many voltage regulator modules and is increased in a dependence of voltage regulator module.
The following patents each discloses features in common with the present invention but dot not teach or suggest the specifically recited fault tolerant voltage regulator module circuit of the present invention: U.S. Pat. No. 5,745,670 to Linde, entitled Fault Tolerant Power Supply System, U.S. Pat. No. 5,598,041 to Willis, entitled Efficient Fault Tolerant Switching Circuit For Redundant D.C. Power Supplies, U.S. Pat. No. 5,811,895 to Suzuki et al., entitled Power Supply Circuit For Use With A Battery And An AC Power Adaptor, U.S. Pat. No. 5,493,155 to Okamoto et al., entitled Electric Power Supply System, U.S. Pat. No. 5,498,913 to Moritani, entitled Power Supply Control Apparatus With A Manually Operable Control Switch, U.S. Pat. No. 4,954,993 to Yamaguchi et al., entitled Semiconductor Integrated Circuit Having A Plurality Of Circuit Blocks Respectively Supplied With Power From Different Power Sources, U.S. Pat. No. 5,103,157 to Wright, entitled Common Emitter Amplifiers Operating From A Multiplicity Of Power Supplies, U.S. Pat. No. 5,138,184 to Keefe, entitled Solid State Static Power Transfer Mechanism, U.S. Pat. No. 5,187,382 to Kondo, entitled Apparatus For Detecting The Existence Of An Abnormality In A Vehicle Operator Protection System, U.S. Pat. No. 4,791,443 to Foley et al., entitled Photographic Processor With Auxiliary Power Supply, U.S. Pat. No. 4,812,672 to Cowan et al, entitled Selective Connection OfPower Supplies, U.S. Pat. No. 5,708,771 to Brant et al., entitled Fault Tolerant Controller System And Method, and U.S. Pat. No. 5,796,274 to Willis et al., entitled Fault Tolerant Most Driver.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a fault tolerant voltage regulator module circuit for supplying core voltage to processors, which has a stand-by voltage regulator module preventing the system from being down and for supplying power to processors in the event that main voltage regulator modules supply a low voltage or are down. The stand-by voltage regulator module is coupled through diodes to the main voltage regulator modules.
It is another object of the present invention to provide a fault tolerant voltage regulator module circuit for supporting even different voltage level main VRMs at the same time by using schottky diodes.
It is still another object of the present invention to provide a fault tolerant voltage regulator module circuit having the stand-by VRM make support a plurality of main VRMs at the same time.
According to one preferred embodiment, when a processor core voltage and cache voltage are different, a fault tolerant voltage regulator module circuit for supplying core voltage and cache voltage to a processor has a plurality of main voltage regulator modules for supplying core voltage and L2 cache voltage to the processor, a stand-by voltage regulator module for when a fault occurs in the plurality of main voltage regulator modules, a plurality of diodes coupled in parallel between each of the plurality of main voltage regulator modules and the stand-by voltage regulator module for automatically supplying power of the stand-by voltage regulator module, a plurality of first power islands connecting each of the plurality of main VRMs with the processor and each of output port of the plurality of diodes, a control signal set switch for setting output voltage level of the stand-by voltage regulator module, and a second power island connecting the stand-by VRM with input port of the plurality of diodes and the control signal set switch.
According to the present invention, to allow the stand-by VRM to support both core voltage and L2 cache voltage, a power MOSFET is coupled in series with a plurality of schottky diodes and in parallel with one of the plurality of diodes, which is connected to a L2 cache VRM of the plurality of main VRMs and a plurality of power MOSFETs by-pass predetermined ones of the plurality of schottky diodes by control of the control signal set switch. According to another preferred embodiment, a fault tolerant VRM circuit for simultaneously supplying core voltage to a plurality of processors has a plurality of main VRMs for supplying the same output voltage level to the plurality of processors, a stand-by VRM for when a fault occurs in the plurality of main VRMs, a plurality of diodes coupled in parallel between each of the plurality of main VRMs and the stand-by VRM for automatically supplying power of the stand-by VRM, a plurality of first power islands for connecting each of the plurality of main VRMs with the processor and each of output port of the plurality of diodes, a control signal set switch for setting output voltage level of the stand-by VRM, and a second power island for connecting the stand-by VRM with input port of the plurality of diodes and the control signal set switch.


REFERENCES:
patent: 4292581 (1981-09-01), Tan
patent: 4791443 (1988-12-01), Foley et al.
patent: 4812672 (1989-03-01), Cowan et al.
patent: 4954993 (1990-09-01), Yamaguchi et al.
patent: 5103157 (1992-04-01), Wright
patent: 5138184 (1992-08-01), Keefe
patent: 5187382 (1993-02-01), Kondo
patent: 5493155 (1996-02-01), Okamoto et al.
patent: 5498913 (1996-03-01), Moritani
patent: 5598041 (1997-01-01), Willis
patent: 5708771 (1998-01-01), Brant et al.
patent: 5745670 (1998-04-01), Linde
patent: 5796274 (1998-08-01), Willis et al.
patent: 5811895 (1998-09-01), Suzuki et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fault tolerant voltage regulator module circuit for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fault tolerant voltage regulator module circuit for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fault tolerant voltage regulator module circuit for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2608111

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.