ESD protection scheme for outputs with resistor loading

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S357000, C257S360000, C257S363000

Reexamination Certificate

active

06740934

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to electrostatic discharge (ESD) protection circuits, and more particularly to ESD protection for NMOS/PMOS circuits with an output resistor between an internal circuit and the output pad.
2. Description of the Related Art
Integrated circuits (IC) are susceptible to damage caused by electrostatic discharge from environmental sources. Such sources of relative charge are people handling the wafer, die, or packaged IC, improperly grounded test and assembly equipment, and the device itself, which may accumulate charge during storage and transport. To avoid these post-fabrication yield losses, each IC must be designed to withstand the likely types of environmental electrostatic discharge it may face. The basic models used are the Human Body Model (HBM) and the Machine Model (MM). Circuits which require an output resistor are particularly vulnerable because the output resistor causes unacceptable power dissipation during an ESD and, therefore, degrades the ESD performance.
U.S. Patents which relate to ESD protection are:
U.S. Pat. No. 5,825,601 (Statz et al.) relates to a power supply ESD protection circuit which reduces on-die capacitance requirements.
U.S. Pat. No. 6,147,538 (Andresen et al.) shows a CMOS triggered NMOS ESD protection circuit having amplifier circuitry to increase substrate pump current response.
U.S. Pat. No. 6,130,117 (Walker) discloses improved devices and methods for manufacturing ESD and OV protection devices.
U.S. Pat. No. 5,576,557 (Ker et al.) teaches an ESD circuit for protecting a semiconductor integrated circuit, where the ESD circuit connects between a circuit pad and the internal circuitry of the integrated circuit.
None of the above-cited examples of the related art address the problem of degraded output pad ESD performance and excessive power dissipation caused by output resistor loading.
SUMMARY OF THE INVENTION
It is an object of at least one embodiment of the present invention to provide structures and a method to increase the power dissipation of an output pad of an integrated circuit during electrostatic discharge (ESD).
It is another object of the present invention to prevent ESD current flowing through resistive means between an output pad and an internal circuit.
It is yet another object of the present invention to provide these benefits to CMOS circuits.
These and many other objects have been achieved by splitting the drain of the NMOS and PMOS transistors to build a bipolar transistor. This bipolar transistor in conjunction with an existing parasitic bipolar transistor (created by a MOS transistor) shorts out or shunts the resistive means between the output pad and the internal circuit when both bipolar transistors conduct during ESD, thus eliminating any current flow in the resistive means. The active region (also called OD) connects directly to the output pad to act as the primary ESD protection device where the aforementioned bipolar transistor bypasses most of the ESD current. Because the bipolar transistor and the parasitic transistor both conduct there is no voltage drop across the resistive means and, therefore, no power dissipation through it.
These and many other objects and advantages of the present invention will be readily apparent to one skilled in the art to which the invention pertains from a perusal of the claims, the appended drawings, and the following detailed description of the preferred embodiments.
In the following, first and second conductivity types are opposite conductivity types, such as N and P types. Each embodiment includes its complement as well. Note also that the figures herein illustrate vertical cross sections of devices and that the devices extend laterally (into and/or out of the page) in a manner appreciated by those skilled in the art.


REFERENCES:
patent: 5576557 (1996-11-01), Ker et al.
patent: 5594326 (1997-01-01), Gilbert
patent: 5754380 (1998-05-01), Ker et al.
patent: 5825601 (1998-10-01), Statz et al.
patent: 6130117 (2000-10-01), Walker et al.
patent: 6147538 (2000-11-01), Andresen et al.
patent: 6559508 (2003-05-01), Lin et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

ESD protection scheme for outputs with resistor loading does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with ESD protection scheme for outputs with resistor loading, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and ESD protection scheme for outputs with resistor loading will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3246947

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.