Coherent light generators – Particular resonant cavity – Mirror support or alignment structure
Reexamination Certificate
2004-03-23
2008-03-18
Oh-Harvey, Minsun (Department: 2828)
Coherent light generators
Particular resonant cavity
Mirror support or alignment structure
C372S055000
Reexamination Certificate
active
07346093
ABSTRACT:
A high power narrow band, high repetition rate laser light source optical improvement apparatus and methods are disclosed with a fast angularly positionable mirror having a mirror mounting frame, a reflective optic with a coefficient different from that of the mounting frame, at least one flexure mount fromed in the mounting frame that is flexible having flexure arm attached the flexture to the mounting frame. The apparatus may include a flexure force mechanism having an elongated rod. The force mechanism may pre-stress the flexure. The mirror maybe a grating which includes a substrate with metallic layer formed on the substrate, and a protective coating made of silica formed on the reflective metallic layer. The grating maybe actively tuned using an electro- or magneto-sensitive element. Oxides of the metal in the reflective layer may be removed by a hydrogen purge system exposed to deep ultraviolet radiation.
REFERENCES:
patent: 2759106 (1956-08-01), Wolter
patent: 3150483 (1964-09-01), Mayfield et al.
patent: 3232046 (1966-02-01), Meyer
patent: 3279176 (1966-10-01), Boden
patent: 3746870 (1973-07-01), Demarest
patent: 3960473 (1976-06-01), Harris
patent: 3961197 (1976-06-01), Dawson
patent: 3969628 (1976-07-01), Roberts et al.
patent: 4042848 (1977-08-01), Lee
patent: 4088966 (1978-05-01), Samis
patent: 4143275 (1979-03-01), Mallozzi et al.
patent: 4162160 (1979-07-01), Witter
patent: 4203393 (1980-05-01), Giardini
patent: 4504964 (1985-03-01), Cartz et al.
patent: 4536884 (1985-08-01), Weiss et al.
patent: 4538291 (1985-08-01), Iwamatsu
patent: 4596030 (1986-06-01), Herziger et al.
patent: 4618971 (1986-10-01), Weiss et al.
patent: 4626193 (1986-12-01), Gann
patent: 4633492 (1986-12-01), Weiss et al.
patent: 4635282 (1987-01-01), Okada et al.
patent: 4751723 (1988-06-01), Gupta et al.
patent: 4752946 (1988-06-01), Gupta et al.
patent: 4837794 (1989-06-01), Riordan et al.
patent: 5023897 (1991-06-01), Neff et al.
patent: 5027076 (1991-06-01), Horsley et al.
patent: 5102776 (1992-04-01), Hammer et al.
patent: 5126638 (1992-06-01), Dethlefsen
patent: 5142166 (1992-08-01), Birx
patent: 5313481 (1994-05-01), Cook et al.
patent: 5377044 (1994-12-01), Tomono et al.
patent: 5411224 (1995-05-01), Dearman et al.
patent: 5448580 (1995-09-01), Birx et al.
patent: 5504795 (1996-04-01), McGeoch
patent: 5550669 (1996-08-01), Patel
patent: 5729562 (1998-03-01), Birx et al.
patent: 5763930 (1998-06-01), Partlo
patent: 5801891 (1998-09-01), Lloyd
patent: 5866871 (1999-02-01), Birx
patent: 5936988 (1999-08-01), Partlo et al.
patent: 5963616 (1999-10-01), Silfvast et al.
patent: 6031241 (2000-02-01), Silfvast et al.
patent: 6039850 (2000-03-01), Schulz
patent: 6051841 (2000-04-01), Partlo
patent: 6064072 (2000-05-01), Partlo et al.
patent: 6081544 (2000-06-01), Zamel et al.
patent: 6172324 (2001-01-01), Birx
patent: 6195272 (2001-02-01), Pascente
patent: 6360035 (2002-03-01), Hurst et al.
patent: 6452199 (2002-09-01), Partlo et al.
patent: 6466365 (2002-10-01), Maier et al.
patent: 6496528 (2002-12-01), Titus et al.
patent: 6511703 (2003-01-01), Pan et al.
patent: 6556364 (2003-04-01), Meehan et al.
patent: 6566667 (2003-05-01), Partlo et al.
patent: 6566668 (2003-05-01), Rauch et al.
patent: 6576912 (2003-06-01), Visser et al.
patent: 6586757 (2003-07-01), Melnychuk et al.
patent: 6614829 (2003-09-01), Tuganov et al.
patent: 6650810 (2003-11-01), Lieberman et al.
patent: 6661962 (2003-12-01), Calvet et al.
patent: 6760167 (2004-07-01), Meehan et al.
patent: 6873418 (2005-03-01), Howey et al.
patent: 6912052 (2005-06-01), Rao et al.
patent: 2001/0055364 (2001-12-01), Kandaka et al.
patent: 2002/0100882 (2002-08-01), Partlo et al.
patent: 2002/0163313 (2002-11-01), Ness et al.
patent: 2002/0168049 (2002-11-01), Schriever et al.
patent: 2003/0006383 (2003-01-01), Melynchuk et al.
patent: 2003/0068012 (2003-04-01), Ahmad et al.
patent: 2003/0219056 (2003-11-01), Yager et al.
U.S. Appl. No. 10/608,521, filed Jun. 26, 2003, Rafac et al.
Apruzese, J.P., “X-Ray Laser Research Using Z Pinches,”Am. Inst. of Phys. 399-403, (1994).
Bollanti, et al., “Compact Three Electrodes Excimer Laser IANUS for a POPA Optical System,”SPIE Proc. (2206)144-153. (1994).
Bollanti, et al., “Ianus, the three-electrode excimer laser,”App. Phys. B(Lasers&Optics) 66(4):401-406, (1998).
Choi, et al., “A 1013A/s High Energy Density Micro Discharge Radiation Source,”B. Radiation Characteristics, p. 287-290.
Choi, et al., “Fast pulsed hollow cathode capillary discharge device,”Rev. of Sci. Instrum. 69(9):3118-3122 (1998).
Fomenkov, et al., “Characterization of a 13.5nm Source for EUV Lithography based on a Dense Plasma Focus and Lithium Emission,” Sematech Intl. Workshop on EUV Lithography (Oct. 1999).
Hansson, et al., “Xenon liquid jet laser-plasma source for EUV lithography,” Emerging Lithographic Technologies IV, Proc. Of SPIE . vol. 3997:729-732 (2000).
Kato, Yasuo, “Electrode Lifetimes in a Plasma Focus Soft X-Ray Source,”J. Appl. Phys. (33) Pt. 1, No. 8:4742-4744 (1991).
Kato, et al., “Plasma focus x-ray source for lithography,”Am. Vac. Sci. Tech. B., 6(1): 195-198 (1988).
Lebert, et al., “Soft x-ray emission of laser-produced plasmas using a low-debris cryogenic nitrogen target,”J. App. Phys., 84(6):3419-3421 (1998).
Lebert, et al., “A gas discharge based radiation source for EUV-lithography,” Intl. Conf. Micro and Nano-Engineering 98 (Sep. 22-24, 1998) Leuven. Belgium.
Lebert, et al., “Investigation of pinch plasmas with plasma parameters promising ASE,” Inst. Phys. Conf. Ser No. 125: Section 9, pp. 411-415 (1992) Schiersee, Germany.
Lebert, et al., “Comparison of laser produced and gas discharge based EUV sources for different applications,” Intl. Conf. Micro- and Nano-Engineering 98 (Sep. 22-24, 1998) Leuven, Belgium.
Lee, Ja H., “Production of dense plasmas in hypocyloidal pinch apparatus,”The Phys. Of Fluids, 20(2):313-321 (1977).
Lewis, Ciaran L.S., “Status of Collision-Pumped X-ray Lasers,”Am Inst. Phys. pp. 9-16 (1994).
Malmqvist, et al., “Liquid-jet target for laser-plasma soft x-ray generation,”Am. Inst. Phys. 67(12):4150-4153 1996).
Mather, et al., “Stability of the Dense Plasma Focus,”Phys. Of Fluids, 12(11):2343-2347 (1969).
Mayo, et al., “A magnetized coaxial source facility for the generation of energetic plasma flows,”Sci. Technol. vol. 4:pp. 47-55 (1994).
Mayo, et al., “Initial Results on high enthalpy plasma generation in a magnetized coaxial source,”Fusion Techvol. 26:1221-1225 (1994).
Nilsen, et al., “Analysis of resonantly photopumped Na—Ne x-ray-laser scheme,”Am Phys. Soc. 44(7):4591-4597 (1991).
Partlo, et al., “EUV (13.5nm) Light Generation Using a Dense Plasma Focus Device,”SPIE Proc. On Emerging Lithographic Technologies III, vol. 3676, 846-858 (Mar. 1999).
Porter, et al., “Demonstration of Population Inversion by Resonant Photopumping in a Neon Gas Cell Irradiated by a Sodium Z Pinch,”Phys. Rev. Let., 68(6):796-799, (Feb. 1992).
Price, Robert H., “X-Ray Microscopy using Grazing Incidence Reflection Optics,”Am. Inst. Phys., pp. 189-199, (1981).
Qi, et al., “Fluorescence in Mg IX emission at 48.340 Å from Mg pinch plasmas photopumped by Al XI line radiation at 48.338 Å,”The Am. Phys. Soc., 47(3):2253-2263 (Mar. 1993).
Scheuer, et al., “A Magnetically-Nozzled, Quasi-Steady, Multimegawatt, Coaxial Plasma Thruster,”IEEE: Transactions on Plasma Science. 22(6) (Dec. 1994).
Schriever, et al., “Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.”App. Optics. 37(7):1243-1248. (Mar. 1998).
Schriever, et al., “Narrowband laser produced extreme ultraviolet sources adapted to silicon/molybdenum multilayer optics,”J. of App. Phys.. 83(9):4566-4571,
Algots John Martin
Brown Joshua C.
Cybulski Raymond F.
Dunlop John
Howey James K.
Cray William C.
Cymer Inc.
Nguyen Phillip
Oh-Harvey Minsun
LandOfFree
DUV light source optical element improvements does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with DUV light source optical element improvements, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and DUV light source optical element improvements will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3980230