Electrical computers and digital data processing systems: input/ – Input/output data processing – Peripheral adapting
Reexamination Certificate
2000-11-28
2004-02-03
Gaffin, Jeffrey (Department: 2182)
Electrical computers and digital data processing systems: input/
Input/output data processing
Peripheral adapting
C710S070000, C710S071000, C710S072000, C710S073000, C710S008000, C710S062000
Reexamination Certificate
active
06687775
ABSTRACT:
TECHNICAL FIELD
The present invention relates to peripheral storage devices and, more particularly, to a dual purpose serial/parallel data transfer device for use with a peripheral storage device.
BACKGROUND OF THE INVENTION
Peripheral storage devices have become a standard feature in most computer systems. Such devices provide mass storage functionality for a host computer, and may include hard disk drives, CDROM drives, tape drives, and the like. For example, hard disk drives include one or more magnetically coated platters used for storing program instructions, data, and other information used by the computer system. One or more such platters may be configured in a stack, which may be rotated by a spindle or servo motor. A space is provided between each platter to allow an arm having a read/write head to be positioned on each side of each platter such that information may be stored and retrieved. Information may be stored on one or both sides of the platters, which are generally organized into sectors, tracks, zones, and cylinders.
The read/write heads may be mounted onto one or more suspension arms whereby each of the read/write heads may be positioned as desired. The suspension arms may be coupled together at a voice coil motor (VCM) to form one unit or assembly that is positionable by the voice coil motor. The voice coil motor positions the suspension arms so that an active read/write head is properly positioned for reading or writing information. The read/write heads may thus be positioned between an inner diameter and an outer diameter of the platters in a controlled fashion to access data stored thereon.
Hard disk drives and other peripheral storage devices also include a variety of electronic control circuitry for processing data and for controlling its overall operation, including a hard disk controller. For example, the controller may include a processor, a pre-amplifier, a read channel, a write channel, a servo controller, a motor control circuit, a read-only memory (ROM), a random-access memory (RAM), and a variety of disk control circuitry to control the operation of the hard disk drive and to properly interface the hard disk drive to a bus in a host computer system. The disk control circuitry generally includes a processor (e.g., a DSP, microprocessor, microcontroller, or the like) for executing instructions stored in memory to control the operation and interface of the hard disk drive.
The peripheral storage device performs write, read, and servo operations when storing and retrieving data. Generally, a write operation includes receiving data from a system bus and storing the data on the platters. In a read operation, the appropriate sector to be read is located and data that has been previously written to one or more platters is read. The data is then provided to the host computer system. The disk drive may further comprise some form of buffer memory to buffer or temporarily store information on its way from the host system to the storage media (platters) and/or on its way from the media to the host system. In addition, the control circuitry may include instruction memory (e.g., ROM, EEPROM, FLASH, and the like) used for storing firmware instructions for execution by the controller processor, and execution memory (e.g., SRAM) used for storing temporary variables, intermediate results, and the like (scratchpad).
Such peripheral storage devices are typically provided with a parallel data interface for interconnection with a host computer system. One popular form of parallel interface is known as the integrated drive electronics (IDE), sometimes also referred to as intelligent device electronics, and is widely used to connect hard disk drives, CDROM devices, tape drives, and the like to personal computers. This parallel interface employs a forty pin AT attachment (ATA) connector providing interconnection of sixteen bi-directional data lines and various handshaking or interface control signals between the disk drive system and the host computer. Separate cable connections may be provided therebetween in order to supply the disk drive system with power from the host computer.
While the parallel ATA/IDE interface has become a widely used standard in the computer disk drive industry, other forms of interconnection are being developed. For instance, high speed serial interfaces are being considered. However, where two or more interfaces are being used in the marketplace, it may be desirable to provide for universal interconnectivity between disk drives and/or host computers having one or both interfaces. Thus, there is a need for improved apparatus and methodologies for interfacing disk drive systems with host computers having support for multiple interface types.
SUMMARY OF THE INVENTION
The present invention provides a peripheral storage system and a data transfer device for use in such a system, which provide for selective information transfer between a disk drive or other peripheral storage device and a host computer in a serial or parallel data format. The invention further comprises a cable connector and cable assembly for connecting a dual function peripheral storage device with the host computer, whereby serial or parallel data transfer may be accomplished using differential or single-ended formats. The cable connector and cable assembly may be employed to connect with such devices using an ATA type connector on one or both of the peripheral storage device and the host computer, whereby a single cable having cable connectors on both ends may be employed to interconnect with devices including an ATA type connector as well as devices with other types of connectors. In addition, the invention provides a methodology for transferring data between a peripheral storage device and a host computer in one of a serial and a parallel data format as well as in one of a single-ended format and a differential format.
The invention thus provides for dual function (e.g., serial and parallel interface capable) peripheral storage device systems by the employment of a data transfer device in the peripheral storage device system. The data transfer device may also be employed in a host computer system to provide serial and parallel data transfer capability therein. The data transfer device may be adapted to interface serial and/or parallel data via a standard ATA type connector, or through a serial connector interface. The cable connector and cable assembly provide for connection to both such connector types, thus allowing a single cable assembly to be employed regardless of the connector types provided on the peripheral storage device and the host computer. In addition, the data transfer device may be adapted to operate in serial or parallel mode according to the type of cable used to interconnect the drive with the host computer. Consequently, the invention provides universal connectivity for peripheral storage device systems and host computers with serial or parallel interface capabilities.
One aspect of the invention provides a cable connector with a housing having an integer number N socket receptacles configured in a first pattern. Some of the receptacles include female sockets for interconnection with one or more signals in a male ATA or other type connector. The cable connector may be adapted to connect with the ATA connector in a single orientation, whereby proper interconnection of signals from the peripheral storage device to the host computer may be ensured. For example, a blocking device may be located in one of the socket receptacles to provide for proper interconnection with an ATA connector, which has an integer number M pins and a missing pin location, where N is less than M.
Thus, the connector, as well as cable assemblies including the connector, may be employed in interconnecting serial peripheral storage devices with serial host computers where one or both include an ATA connector. Additionally, the connector may be used to connect serial devices having connectors other than ATA types. For example, the peripheral storage device and/or the host computer may in
Brady W. James
Gaffin Jeffrey
Knapp Justin
Swayze, Jr. W. Daniel
Telecky , Jr. Frederick J.
LandOfFree
Dual purpose serial/parallel data transfer device for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Dual purpose serial/parallel data transfer device for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual purpose serial/parallel data transfer device for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3298235