Dry etching method

Etching a substrate: processes – Gas phase etching of substrate – Application of energy to the gaseous etchant or to the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C216S067000, C216S068000, C216S069000, C252S079100, C438S710000, C438S729000

Reexamination Certificate

active

06383403

ABSTRACT:

TECHNICAL FIELD
This invention relates to a dry etching process. More particularly, it relates to a dry etching process by which the etching can be conducted at a high rate with good selectivity to a protective thin film such as a photoresist or a polysilicon.
BACKGROUND ART
In recent years, a rapid progress has been achieved in the field of electronics. One reason therefor exists in that an extremely highly integrated semiconductor devices have been put into practice. A dry etching technique is very important for forming a fine pattern on a silicon wafer for achieving the high integration, and is constantly progressing.
In dry etching, in order to produce fluorine-containing active ingredients by plasma discharge or other means, gases of compounds containing many fluorine atoms have heretofore been used as the etching gas. As examples of the fluorine-containing etching gas, there can be mentioned highly fluorinated compounds such as carbon tetrafluoride, sulfur hexafluoride, nitrogen trifluoride, carbon trifluoro-monobromide, trifluoromethane, hexafluoroethane and octafluoropropane.
International efforts for conserving the global environment are being made, and especially those for preventing or minimizing the global warming are now attracting a great interest. For example, in IPCC (Intergovernmental Panel on Climate Change), regulations on control of the total amount of carbon dioxide emission have been established in the international agreement. Under these circumstances, it is pointed that, from a viewpoint of prevention of the global warming, there is an increasing need of developing alternatives for the highly fluorinated compounds heretofore used, which have a long life in the air and cause the global warming. More specifically, it is said that carbon tetrafluoride, hexafluoroethane and sulfur hexafluoride have a life in the air of 50,000, 10,000 and 3,200 years, respectively. These fluorinated compounds exhibit a large absorbability for infrared rays and exert a considerable influence upon the global warming. Thus, it is eagerly desired to develop an etching method utilizing a novel etching gas which does not cause the temperature rise of the globe and has etching performances comparable to those of the heretofore used etching gases.
Various proposals have been made for enhancing the selectivity to a protective thin film such as photoresist or polysilicon in a dry etching method. For example, a proposal has been made in Japanese Unexamined Patent Publication No. H4-170026 wherein a silicon compound is etched by using a gas containing an unsaturated fluorocarbon such as perfluoropropene or perfluorobutene while the temperature of the substrate to be etched is controlled to a temperature not higher than 50° C. Another proposal has been made in Japanese Unexamined Patent Publication No. H4-258117 wherein etching is effected in a manner similar to the above proposal by using a gas containing a cyclic saturated or cyclic unsaturated fluorocarbon such as perfluorocyclopropane, perfluorocyclobutane, perfluorocyclobutene or perfluorocyclopentene, while the temperature of the substrate to be etched is controlled to a temperature not higher than 50° C.
However, in the dry etching methods heretofore proposed in the above patent publications, the rate of etching and the selectivity to a protective thin film such as photoresist or polysilicon is not high to a satisfying extent, and a problem arises in that a polymer film is undesirably produced by deposition on the surface of wafer.
DISCLOSURE OF THE INVENTION
In view of the foregoing conventional techniques, the object of the present invention is to provide a dry etching process by which etching is conducted with a high selectivity to a protective thin film such as photoresist or polysilicon and at a high etching rate without formation of a polymer film by deposition, and thus, good etching results are obtained.
The inventors have continued researches into dry etching of a silicon compound by using dry etching gases containing perfluorocycloolefins, and found that, when the dry etching is conducted by using a dry etching gas containing octafluorocyclopentene while a plasma with a high density region of at least 10
10
/cm
3
is generated, satisfactory etching can be achieved at a high etching rate with a high selectivity to photoresist and a high selectivity to polysilicon and without deposition of a polymer film.
In accordance with the present invention, there is provided a dry etching process characterized in that a substrate to be etched is subjected to dry etching by using a dry etching gas containing octafluorocyclopentene while a plasma with a high density region of at least 10
10
/cm
3
is generated.
BEST MODE FOR CARRYING OUT THE INVENTION
The dry etching gas used in the present invention is characterized by comprising octafluorocyclopentene.
If desired, a fluorocarbon selected from perfluorocycloolefins other than octafluorocyclopentene, and straight chain unsaturated perfluorocarbons, and, perfluoroalkanes and perfluorocycloalkanes may be used, in combination with octafluorocyclopentene. However, if these optional perfluorocarbons are used in a salient amount, the object of the present invention cannot be achieved. Therefore, the amount of these perfluorocarbons is usually not larger than 30% by weight, preferably not larger than 20% by weight and more preferably not larger than 10% by weight, based on the total amount of the fluorocarbons.
Hydrofluorcarbons may also be used in combination with the above-mentioned octafluorocyclopentene as an etching gas.
The hydrofluorocarbon gases used are not particularly limited provided that they are volatile. Usually, the hydrofluorocarbons used are selected from straight chain or branched chain or cyclic saturated hydrocarbons, of which at least half of the hydrogen atoms have been substituted by fluorine atoms. As specific examples of the saturated hydrofluorocarbon gases, there can be mentioned trifluoromethane, pentafluoroethane, tetrafluoroethane, heptafluoropropane, hexafluoropropane, pentafluoropropane, nonafluorobutane, octafluorobutane, heptafluorobutane, hexafluorobutane, undecafluoropentane, decafluoropentane, nonafluoropentane, octafluoropentane, tridecafluorohexane, dodecafluorohexane, undecafluorohexane, heptafluorocyclobutane, hexafluorocyclobutane, nonafluorocyclopentane, octafluorocyclopentane and heptafluorocyclopentane. Of these, trifluoromethane, pentafluoroethane and tetrafluoroethane are preferable. The hydrofluorocarbon gases may be used either alone or as a combination of at least two thereof.
The amount of the hydrofluorocarbon gas used in combination with octafluorocyclopentene varies depending upon the material of substrate to be etched, but is usually not larger than 50% by mole and preferably not larger than 30% by mole, based on the octafluorocyclopentene.
According to the need, various gases generally used for dry etching can be added in the dry etching gas used in the present invention. Such added gases include, for example, oxygen gas, nitrogen gas, argon gas, hydrogen gas, chlorine gas, carbon monoxide gas, carbon dioxide gas, nitrogen oxide gas and sulfur oxide gas. Of these, oxygen gas and carbon dioxide gas are preferable. Oxygen gas is most preferable. These gases may be used either alone or as a combination of at least two thereof.
The amount of the gas optionally incorporated varies depending upon the particular degree of influence of the gas perfluoro-3-methylcyclobutene, perfluoro-1-methylcyclopentene and perfluoro-3-methylcyclopentene are preferable. Perfluorocyclopentene is most preferable. These perfluorocycloolefins are used either alone or as a combination of at least two thereof.
In the present invention, perfluoroolefins other than the perfluorocycloolefins, namely, straight chain unsaturated perfluorocarbons, and/or straight chain perfluoroalkanes and/or perfluorocycloalkanes may be used, in combination with the perfluorocycloolefins. However, if these optional perfluorocarbons are used in a salient amount, the object of the present

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dry etching method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dry etching method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dry etching method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2828745

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.