Deposition reactor having vaporizing, mixing and cleaning...

Coating apparatus – Gas or vapor deposition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S345420, C239S001000, C239S548000, C239S597000, C239S601000

Reexamination Certificate

active

06454860

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an apparatus and process for the vaporization of liquid precursors and the controlled delivery of those precursors to form films on suitable substrates. More particularly, this invention relates to an apparatus and a method for the deposition of a high dielectric constant film, such as Tantalum Oxide (Ta
2
O
5
), on a silicon wafer to make integrated circuits useful in the manufacture of advanced dynamic random access memory (DRAM) modules and other semiconductor devices.
2. Background of the Invention
The desire for greater capacity integrated circuits (ICs) on smaller sized devices has increased interest in replacing today's 64 megabit DRAM with memory devices in the range of 256 megabit, 1 gigabit and higher. This need for increased capacity on the same or smaller substrate footprint device makes it necessary to replace conventional dielectric films previously used in stacked capacitor formation, such as silicon dioxide (SiO
2
), with dielectric films having higher dielectric constants. Capacitors containing high-dielectric constant materials, such as Ta
2
O
5
, usually have much larger capacitance densities than standard SiO
2
—Si
3
N
4
—SiO
2
stack capacitors making them the materials of choice in IC fabrication. High dielectric constant films are desirable because they provide higher capacitance which enables closer spacing of devices without electrical interference which can increase transistor density. One material of increasing interest for stack capacitor fabrication is Tantalum Oxide which has a relative dielectric constant more than six times that of SiO
2
.
One common method of forming Tantalum oxide film is to vaporize a liquid Tantalum precursor and then deliver the Tantalum vapor to a deposition chamber. Such vapor delivery methods face numerous challenges because of the low vapor pressure of typical Tantalum precursors such as (Ta(OC2H
5
)
5
) or TAETO and Tantalum Tetraethoxide Dimethylaminoethoxide (Ta(OEt)
4
(OCH
2
CH
2
N(Me)
2
) or TAT-DMAE, both of which are liquid at room temperature and pressure.
FIG. 1
graphically illustrates the large variation between the vapor pressure of Tantalum precursors and other representative prior-art precursors for other semiconductor related processes. For example, at 100° C. and 1 atm TAT-DMAE has about 0.3 Torr vapor pressure while TAETO has about 0.03 Torr vapor pressure. The vapor pressures for Tantalum precursors are remarkably lower than those precursors typically used in prior art vapor delivery systems which are intended to vaporize precursors having much higher vapor pressures. Again referring to
FIG. 1
, at 100° C. and 1 atm, TEOS, (Tetra Ethyl Ortho-Silicate) which is commonly used in chemical vapor deposition processes to form SiO
2
films and is the subject of several prior art vapor delivery systems, has a vapor pressure of almost 100 Torr. As a result of this vast difference in vapor pressure, prior art vapor delivery systems did not encounter nor provide solutions to many of the challenges resulting from the use of very low vapor pressure precursors such as TAETO and TAT-DMAE.
Prior art vapor delivery systems commonly involved the use of an integrated liquid flow controller and vaporizer without a positive liquid shut-off valve. Such a configuration, when used with low vapor pressure Tantalum precursors, can lead to problems stabilizing the Tantalum vapor output and difficulty achieving the constant, repeatable Tantalum vapor output desirous in semiconductor device fabrication. Previous delivery systems, based upon experience with TEOS and other relatively high vapor pressure materials, allow for the flow controller and vaporizer to be separated by considerable distance or attach no significance to the distance between vaporizer and liquid flow meter. Positioning the vaporizer and flow meter according to prior art systems fail to adequately control Tantalum precursor vapor. Previous delivery systems are intended for use with higher vapor pressure precursors whose residuals can be adequately removed by applying low pressure or “pumping-down”the lines while flowing an inert gas like nitrogen. Purging techniques such as these fail with Tantalum systems because the low vapor pressure residual tantalum vapor creates a need to introduce a solvent, such as isopropyl alcohol, ethanol, hexane, or methanol into both the vaporization system and supply lines to remove residual Tantalum precursor vapor.
Previous vapor delivery systems avoided precursor vapor condensation by heating the delivery lines usually by resorting to a flexible resistive heater which is wrapped around and held in direct contact with the line, and then insulated. Since such systems typically operated with precursor materials having a wide temperature range within which the precursor remains vaporous, the requirement to sample the temperature of any section of the heated line was low and typically a single thermocouple would be used to represent the temperature of piping sections as long as four to six feet. Since the object of large scale temperature control systems, such as wrapped lines and jacket-type heaters used in prior art systems, is to heat and monitor an average temperature of a large section of piping, such systems lack the ability to specifically control a single, smaller section of the vapor piping and generally have very low efficiency when higher line temperatures are desired. Vaporized Tantalum delivery systems maintain the Tantalum vapor above the vaporization temperature but below the decomposition temperature for a given Tantalum precursor. Once formed, the vaporous Tantalum must be maintained at elevated temperatures between about 130° C. and 190° C. for TAT-DMAE and between about 150° C. and 220° C. for TAETO. Because of the relatively high temperatures needed and the narrow temperature band available to low vapor pressure precursors such as TAT-DMAE and TAETO, Tantalum and other low vapor pressure liquid delivery systems would benefit from vapor delivery line temperature controls and methods which can achieve and efficiently provide the higher temperatures and greater temperature control needed for Tantalum vapor delivery. Additionally, finer temperature controls are desirous since the useable temperature range of vaporized low pressure liquids is smaller than prior art liquids. Because higher temperature vapor delivery is needed, Tantalum delivery systems would benefit from designs which minimize the length of heated vapor delivery lines. Minimizing the length of lines requiring heating not only reduces the overall system complexity but also decreases the footprint or overall size of the system.
Current methods of Tantalum Oxide deposition use reaction rate limited chemical vapor deposition techniques. In reaction rate limited deposition processes, the deposition rate achieved under these conditions is largely influenced by the temperature of the reaction environment. Existing chemical vapor deposition reactors do not sufficiently address the thermal losses between the substrate onto which the Tantalum film is to be formed and internal chamber components such as the gas distribution showerhead. Such thermal losses and the resultant non-uniform thickness of deposited Tantalum illustrate the barriers to commercially viable Tantalum oxide film formation techniques. However, with commercially viable Tantalum deposition rates also comes the need for a viable, insitu cleaning process which can remove Tantalum deposition formed on internal chamber components without harm to these components.
There is a need for a Tantalum deposition apparatus which can deliver vaporized, measured Tantalum precursors which have been adequately mixed with process gases to a reaction chamber which provides a controlled deposition environment which overcomes the shortcoming of the previous systems. Additionally, there is also a need for a deposition apparatus capable of in-situ cleaning.
SUMMARY OF THE INVENTION
In one aspect of the present invention, a deposition

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Deposition reactor having vaporizing, mixing and cleaning... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Deposition reactor having vaporizing, mixing and cleaning..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deposition reactor having vaporizing, mixing and cleaning... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2909166

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.