Depositing a material of controlled, variable thickness...

Optics: measuring and testing – By configuration comparison – With photosensitive film or plate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S370000

Reexamination Certificate

active

06184986

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the field of semiconductor processing and, more particularly, to an integrated circuit and method of making the same in which a layer of varying thickness is deposited upon a topographical surface of a semiconductor topography to compensate for elevational variations across the surface.
2. Description of Relevant Art
An integrated circuit consists of electronic devices electrically coupled by conductive trace elements, i.e., interconnect. Interconnect are patterned from conductive layers formed above the surface of a semiconductor substrate in which impurity regions have been formed. An integrated circuit can comprise multiple levels of interconnect spaced from each other by interlevel dielectric layers and electrically linked by contact structures extending through the interlevel dielectric layers. The use of multiple levels of interconnect within an integrated circuit increases the density of active devices placed upon a single monolithic substrate.
In addition to added process complexity, an increase in the number of interconnect levels leads to a corresponding increase in the elevational disparity of the resulting surface (i.e., an increase in the difference between the peaks and valleys of the resulting upper surface). For example, when a dielectric layer is chemically-vapor deposited across interconnect lines laterally spaced from each other within a single horizontal plane, numerous peaks and valleys may result in the upper surface of the dielectric layer. The chemical-vapor deposition (“CVD”) process produces a relatively conformal dielectric layer across the semiconductor topography comprising the interconnect lines. In this manner, the dielectric layer climbs to a higher elevation when it crosses over an interconnect line and falls to a lower elevation in between interconnect lines.
Unfortunately, elevation disparity across the upper surface of an ensuing integrated circuit can lead to many problems. Exemplary problems include stringers arising from incomplete etching over severe steps, failure to open vias due to interlevel dielectric thickness disparity, and poor adhesion to underlying materials. Elevation disparity also causes step coverage problems of, e.g., interconnect placed over an interlevel dielectric peak and valley area as well depth-to-focus problems when patterning, e.g., interconnect upon an interlevel dielectric. Many manufacturers have undergone extensive research in methods for planarizing topographical surfaces in order to avoid the above problems. Chemical-mechanical polishing (“CMP”) is a well known technique used to planarize the surfaces of layers formed during integrated circuit fabrication.
A typical CMP process involves placing a semiconductor wafer face-down on a polishing pad which is fixedly attached to a rotatable table or platen. Elevationally extending portions of the downward-directed wafer surface contact with the rotating pad. A fluid-based chemical, often referred to as a “slurry” is deposited upon the pad possibly through a nozzle such that the slurry becomes disposed at the interface between the pad and the wafer surface. The slurry initiates the polishing process by chemically reacting with the surface material being polished. The polishing process is facilitated by the rotational movement of the pad relative to the wafer (or vice versa) to remove material catalyzed by the slurry. Unfortunately, if the reaction rate of the slurry with the surface material varies across the surface, certain areas of the wafer may be removed more quickly than others. Further, a CMP polishing pad which conforms to underlying surfaces, or bows in an arcuate pattern in response to force applied thereto, may undesirably remove some portions of the wafer while leaving others behind. Thus, reaction rate variation and/or pad pressure variation can lead to the formation of recesses in the topographical surfaces being “planarized” by CMP.
It would therefore be desirable to develop a process for substantially planarizing the upper surface of a semiconductor topography. Particularly, a process is needed which would minimize the surface disparity across a layer formed during the fabrication of an integrated circuit. A planarization process which does not result in the formation of recesses in the topographical surfaces being planarized would be beneficial. Such a process could be used as a replacement of a CMP planarization step, or in some cases as a back-up planarization step in addition to CMP.
SUMMARY OF THE INVENTION
The problems identified above are, in large part, addressed by an improved method for substantially planarizing a surface having surface disparity. The profile of the upper surface of a semiconductor topography is detected in order to quantify the elevational variations across the surface and store the elevational variations in a database. A deposition tool is then used to deposit a profile layer of varying thickness across the topographical surface, wherein the thickness of the profile layer is controlled as a function of the elevation of the topographical surface, as indicated by the database. In this manner, the thickness of the profile layer is made thicker upon the more recessed regions of the topographical surface than upon the more elevated regions of the topographical surface. Thus, the profile layer compensates for elevational variations, resulting in a substantially planar upper surface. Advantageously, the present planarization method may be used to replace CMP planarization techniques or to compensate for recesses formed in a surface as a result of CMP.
In one embodiment, a profile detection tool (e.g., a stylus profilometer, an interferometer, a scanning capacitance microscope, or a Thermowave™ microscope) is used to detect the elevational variations across a topographical surface. A database is created to quantify the elevational variations across the topographical surface. The database comprises a plurality of x, y, and z coordinates, wherein the x and y coordinates indicate a location across the surface of the wafer, and wherein the z coordinate indicates the elevation of the upper surface of the wafer at that location. The database is provided to a control system of a deposition tool, e.g., a plasma-enhanced CVD (“PECVD”) deposition tool. A semiconductor topography comprising the topographical surface is positioned within a chamber of the deposition tool. A potential gradient representative of the elevational variations of the topographical surface, as indicated by the control system, is formed across the surface. A profile layer is then deposited upon the topographical surface. The potential present at a particular location on the surface dictates the amount of material deposited at that position. Thus, the potential gradient causes a varying thickness of the profile layer to be deposited across the topographical surface. For example, the potential gradient may be used to control where excited atoms sourced from a plasma become adsorbed upon the surface during PECVD. In this manner, more excited atoms can be adsorbed upon the valleys of the topographical surface than upon the peaks. The excited atoms thus react to form a material that is thicker over the more recessed regions of the topographical surface than over the more elevated regions of the topographical surface. The upper surface of the resulting semiconductor topography is thus substantially free of surface disparity.
In another embodiment, elevational variations across a topographical surface are used to dictate the opening and closing of piezo valves disposed within a conduit leading to shower head openings. The piezo valves control the flow of reactant species through the openings into a PECVD chamber in which the semiconductor topography comprising the topographical surface is placed. A database created from measurements taken by a profile detection tool of the topographical surface is provided to a control system which regulates the piezo valves. A larger quantity of reactant speci

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Depositing a material of controlled, variable thickness... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Depositing a material of controlled, variable thickness..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Depositing a material of controlled, variable thickness... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2599079

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.