Data output interface, in particular for semiconductor memories

Static information storage and retrieval – Read/write circuit – Having particular data buffer or latch

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S233100, C365S189120

Reexamination Certificate

active

06628553

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a data output interface, and in particular to a data output interface for semiconductor memories.
Integrated semiconductor circuits usually have an input terminal for feeding in a clock signal. This clock signal can be fed in either as an asymmetrical signal carried on one line or as a symmetrical clock signal carried on two lines. Such a clock signal serves, for example, for synchronizing the component with other components, for supplying internal phase-locked loops, for deriving derived clock signals, etc.
Particularly in high-speed semiconductor memory circuits, for example in double data rate synchronous dynamic random access memories (DDR-SDRAMs), a clock delay, that is to say a phase shift of the clock signal, occurs during the internally distribution of the clock signal on the chip. Moreover, fluctuations in the phase angles of the rising and falling edges of the clock signal can result from the fact that, at high clock frequencies, it is necessary to switch the clock signal for its further processing.
A high-precision clock signal with no or with a very small phase shift of the output clock signal relative to the input clock signal is required, for example, at data output drivers in semiconductor memories for reading-out stored data.
One possibility for correctly synchronizing the phase of an output clock signal with the phase of an input clock signal consists of, for example, artificially adding a further phase shift to the unavoidable phase shift that occurs on the chip, with the aim that the phase shift of the output clock signal relative to the input clock signal amounts to an integer multiple of the clock period of the periodic signal and is accordingly imperceptible. However, this requires an additional measurement and also additional circuitry, and moreover, manufacturing variations can nevertheless lead to lasting phase shifts. Furthermore, a so-called clock skew can remain as a result of switching the clock signal. In other words, the clock edges of the clock signal at the output of the semiconductor memory or integrated circuit fluctuate by a specific phase deviation.
However, a precise signal that is correct with respect to phase is required for a microprocessor to detect the data to be output from a semiconductor memory. The signal is referred to as DQS signal, a data strobe signal, for example, in the case of the DDR SDRAMs described.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a data output interface which overcomes the above-mentioned disadvantages of the prior art apparatus of this general type.
In particular, it is an object of the invention to provide a data output interface, in particular for high-speed semiconductor memories, in which a low-tolerance signal with regard to its phase angles is provided for the communication of data to be output during a read operation from the semiconductor module.
With the foregoing and other objects in view there is provided, in accordance with the invention, a data output interface, including: an interface data output (the data output of the data output interface); an interface data input (the data input of the data output interface) for feeding in data that will be output at the interface data output; an interface clock input for feeding in a clock signal; an interface activation input for initiating data outputting of the data that will be output at the interface data output; and at least one output driver having a data input and a data output coupling the interface data input to the interface data output. The output driver has a clock input coupled to the interface clock input. The output driver has an activation input coupled to the interface activation input. The data output interface also includes a further output driver having a data input coupled to said interface activation input. The further output driver has a clock input coupled to the interface clock input. The further output driver has a data output providing a signal for indicating that the data are being provided at the interface data output and can be read-out.
In accordance with the principle of the present invention, the data output interface is supplemented by an additional signal, for indicating that data are available at the output of the data output interface. This data can be read out via a data bus, for example.
This signal is derived in a manner dependent on the clock signal fed to the data output interface with an unavoidable clock delay and also from an activation signal which indicates, for example, a read command from the semiconductor memory to the outside.
This signal for indicating that data are provided at the output of the data output interface is independent of an output clock signal whose phase angle, as explained in the introduction, can fluctuate first with regard to the clock input signal and secondly with regard to temporal drift effects.
Since an output driver module, for example a D-type flip-flop, which is normally present anyway in a data output interface of a semiconductor memory can be used for generating the indication signal, the principle specified can be implemented in particular in high-speed semiconductor memories such as DDR-SDRAMs with little outlay on circuitry.
Instead of a bi-directional data strobe signal, DQS, that is usually provided for the synchronization of a read operation in the case of such semiconductor memories, the present data output interface enables operation at higher frequencies.
Moreover, the provision of a symmetrical output clock signal, a so-called echo clock signal, whose phase angle need not be corrected, means that the entire phase jitter of an integrated circuit can be significantly reduced.
In this case, the described signal for indicating that data for read-out are provided at the output itself leads the data at the data output interface.
In accordance with an added feature of the invention, a plurality of output drivers are provided for coupling the data input and the data output of the data output interface. The output drivers couple two respective data inputs to a respective data output using a parallel/serial conversion.
By way of example, in DDR memory modules, data can be read into the input of the output driver with each clock period, and data to be read from the memory can be output at the output with each clock edge, that is to say with the double data rate.
In this case, output drivers are understood to be active components, for example D-type flip-flops, which provide a sufficient drive power to transfer data from a semiconductor chip to another integrated circuit module, for example, a microprocessor, via a data bus.
In accordance with an additional feature of the invention, the further output driver has two data inputs that are connected to one another. Deriving the signal for indicating that data for read-out are being provided at the data output, using the input clock signal and also by using an activation signal of the data output interface, it is advantageously possible likewise to use an output driver module, for example, a D-type flip-flop, having two data inputs. These data inputs are connected to one another.
In accordance with another feature of the invention, the output driver and the further output driver are in each case designed as a D-type flip-flop each having two data inputs.
In this case, the further output driver can preferably have its activation input put permanently at the state of a logic 1. The input clock signal of the data output interface can preferably be fed to the D-type flip-flop using edge triggering with a falling clock edge.
By virtue of the fact that a simple D-type flip-flop, as is usually found anyway in large numbers in data output interfaces of fast semiconductor memories, can be used for providing the signal for indicating that data for read-out are provided at the data output, the circuit described can be derived from customary semiconductor memory circuits with particularly little outlay on circuitry.
In acco

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Data output interface, in particular for semiconductor memories does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Data output interface, in particular for semiconductor memories, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data output interface, in particular for semiconductor memories will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3105235

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.