Cross-connect module and mount

Telephonic communications – Centralized switching system – Structure of equipment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S325000, C379S327000, C379S330000, C361S825000, C361S826000

Reexamination Certificate

active

06823063

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to cable management. More specifically, the present invention relates to cable management structures for use with electronic equipment racks.
BACKGROUND OF THE INVENTION
In the telecommunications industry, electronic equipment is housed in a series of equipment racks to permit higher densities of connections per unit of floor space. Installing a large number of connections in an equipment rack is efficient with respect to floor space but places a premium on the ability to manage and maintain the cables leading to and away from these equipment racks. A telecommunications installation might have outside plant or network infrastructure cables connected to switching equipment housed in a series of telecommunications equipment racks, local distribution cables connected to the same switching equipment in the racks, and patch cords and cross-connect jumpers linking the switching equipment. The switching equipment being connected can be located within the same rack, in adjacent racks, in racks within the same linear row or aisle, or in racks in different aisles. In addition, electrical power and thus power cables must be supplied to the switching equipment. All of these cables must be provided with paths or cable management structures within the equipment racks and between the equipment racks.
These network infrastructure, patch, jumper and power cables share the available cable management structures within a telecommunications installation. For dense installations, it is desirable to provide some manner of grouping like cables together to improve maintenance and operational efficiency. For instance, cross-connect cables and network infrastructure cables may share the same vertical path on an equipment rack. The cross-connect cables are accessed and moved much more frequently than the network interface cables. Therefore, some way of grouping and segregating these cables within the same vertical cable path is desirable.
In addition, segregation and separation of cross-connect cables is also desirable. Some cross-connect cables link devices on the same rack while other cross-connect cables link equipment on separate racks. The racks within a particular telecommunications installation will have a series of horizontal paths or troughs which serve both types of cross-connect cables. For improved operational and maintenance efficiency, some apparatus for organizing and segregating these cross-connect cables as intra-rack and inter-rack should be provided. Other improvements to these troughs to provide better access to and visibility of the cables in the troughs, and to allow easier entry and exit of cables to the troughs, are also desirable.
There is an ever-increasing demand for additional telecommunications connections within existing installations. It is desirable to supply these connections within the same physical racks and wiring closets. Devices which allow switching and connection modules of higher levels of connection density are desirable. In addition, in a telecommunications equipment rack, it is desirable to have some ability to store small tools and equipment as well as additional patch cords for cross-connecting circuits. This will allow minor tasks, such as switching and small repairs to be done at that rack with materials close at hand. However, the provision of such a storage area should not detract from the number of circuits that a telecommunications rack can supply.
SUMMARY OF THE INVENTION
The present invention relates to electronic equipment racks which provide a higher density of connections within a given floor space, provide improved cable management structures, and provide storage of tools and cables on the rack itself without sacrificing connection space.
A first aspect of the present invention relates to cable guides including first and second ring structures which define first and second vertical cable channels, respectively. The second ring structure is hingedly mounted to the first ring structure and moves from a position closing access to the first channel and a second position allowing access to the first cable channel. A further aspect of the present invention relates to the use of cable guides on a telecommunications equipment rack to define vertical cable channels for managing cables extending from equipment attached to the rack. A further aspect of the present invention relates to a method of inserting cables into vertical cable channels defined by cable guides.
A further aspect of the invention relates to cable troughs having a mounting wall, a bottom and two outer walls, with cable access openings in the bottom. One embodiment of these cable troughs defines two horizontal cableways, between the mounting wall and the first outer wall and between the first outer wall and the second outer wall. Access is provided into both cableways through openings in the bottom and an opening allowing cables to move from one cableway into the other cableway is provided in the first inner wall. A second embodiment of the cable troughs defines a single cableway between the first and second outer walls and provides access to the cableway through an opening in the bottom and an opening in the first outer wall. A further aspect of the present invention relates to the use of cable troughs to define upper and lower horizontal cable troughs on a telecommunications equipment rack. A further aspect of the present invention relates to a method of managing cables extending from equipment mounted in a telecommunications equipment rack using horizontal cable troughs. A further aspect of the present invention relates to an electronic equipment rack with a storage drawer attached, wherein the storage drawer is mounted in the lowest position on the rack.
A further aspect of the invention relates to cross aisle connection panels and ring structures attached to cross aisle panels defining vertical cable channels. A further aspect of the present invention relates to the installation of cross aisle panels near the top of telecommunications equipment racks where the ring structures cooperate with cable guides to form vertical cable channels.
A further aspect of the invention relates to cross-connect modules for connecting telecommunications equipment. These cross-connect modules include a front mounted jack field and rear connections mounted on several connector planes, the connector planes being offset horizontally from each other. A further aspect of the present invention relates to a cross-connect module having three sections, with each section having a different width, a jack field on the front of the first section and rear connectors being mounted to the rear of the second and third sections. A further aspect of the present invention relates to a telecommunications rack with a cross-connect module installed, the cross-connect module having three sections, with each section having a different width, a jack field on the front of the first section and rear connectors being mounted to the rear of the second and third sections. A further aspect of the present invention relates to a cross-connect cable tray attached to the rear of a cross-connect module and removable from the module without tools.
A variety of advantages of the invention will be set forth in part in the description that follows, and in part will be apparent from the description, or may be learned by practicing the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.


REFERENCES:
patent: 2896009 (1959-07-01), Caveney
patent: 4603377 (1986-07-01), Kobayashi et al.
patent: 4665546 (1987-05-01), Brey et al.
patent: 4717216 (1988-01-01), Hornak
patent: 5023404 (1991-06-01), Hudson et al.
patent: 5220600 (1993-06-01), Chouanard et al.
patent: 5326934 (1994-07-01), LeMaster et al.
patent: RE34955 (1995-05-01), Anton et al.
patent: 5497444 (1996-03-01), Wheeler
patent: 5542549 (1996-08-01), Siemon et al.
patent: 5586012 (1996-12-0

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cross-connect module and mount does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cross-connect module and mount, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cross-connect module and mount will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3296793

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.