Copper interconnections for metal-insulator-metal capacitor...

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S239000

Reexamination Certificate

active

06399495

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to a method for forming a metal-insulator-metal (MIM) capacitor and interconnects in integrated circuits, and more particularly relates to a method for forming a metal-insulator-metal (MIM) capacitor and copper interconnects in a mixed mode signal process.
2. Description of the Prior Art
Along with the advance of semiconductor fabrication, ultra large semiconductor integration (ULSI) increasingly replaces very large semiconductor integration (VLSI) in many products and applications. Accompanying this trend, many useful fabrications of VLSI are becoming known. It is now desired to develop new fabrications.
As important example is that copper has become a promising candidate to replace aluminum of ULSI interconnections due to its better conductivity and reliability, which his more significant when the electromigration is more serious along with the decrement of the width of interconnections.
Along with the development of ULSI, layout rule will shrink and the application of the product is likely to expand the development of multi-chips of integrated functions. Hence, it is more and more important to regulate or combine copper processes and another complicated process, such that copper interconnection for MIM capacitor in a mixed mode signal process.
SUMMARY OF THE INVENTION
The object of the invention is to provide a method for forming a MIM capacitor and copper interconnections in a mixed mode signal process.
Another object of the invention is to use copper as the top and the bottom electrode so that one level of metallization can be elimintated.
In order to achieve the previous objections of the invention, a method comparing the following essential steps is provided. First, a substrate with a plurality of conductive blocks under a surface of substrate is provided. The conductive blocks can be made of a metal, such as copper. Then, a first nitride layer is deposited on the substrate and then a first inter-metal-dielectric (IMD) layer is formed thereon. Next, a second nitride layer and a second IMD layer are sequentially formed on the first IMD layer. Thereafter, a first mask is formed on the second IMD layer with a first opening to expose the second IMD layer. Next, a first etching process is performed to form a via through the second IMD layer, the second nitride layer, the first IMD layer and the first nitride layer in the first opening to expose one of those conductive blocks. Then, a second etching process is performed to form a hole to expose the first nitride layer, wherein the hole is above one of those conductive blocks. Last, a conductive material is filled into the via and the hole to form the MIM capacitor and the interconnection. The conductive material can be made of a metal, such as copper.


REFERENCES:
patent: 5532516 (1996-07-01), Pasch et al.
patent: 6010962 (2000-01-01), Liu et al.
patent: 6080656 (2000-07-01), Shih et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Copper interconnections for metal-insulator-metal capacitor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Copper interconnections for metal-insulator-metal capacitor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Copper interconnections for metal-insulator-metal capacitor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2963555

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.