Composition for resist underlayer film and method for...

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S272100, C430S905000, C430S914000, C430S919000, C430S921000, C430S923000, C430S925000

Reexamination Certificate

active

06576393

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a composition for a resist underlayer film and a method for producing the same. More particularly, the present invention relates to a composition for a resist underlayer film excellent in reproducibility of a resist pattern, excellent in adhesion to a resist, excellent in resistance to a developing solution used after exposure of the resist and decreased in film loss in oxygen ashing of the resist, and a method for producing the same.
BACKGROUND OF THE INVENTION
In pattern formation of semiconductor elements, minute processing of organic materials and inorganic materials is carried out by lithography techniques, resist development processes and pattern transfer after the resist development.
However, with the progress of high integration of semiconductor elements, it becomes difficult to accurately transfer patterns to resists in exposure processes, sometimes resulting in wrong processing dimensions in substrate processing processes. Then, anti-reflection films for reducing the influence of standing waves contributing to the wrong processing dimensions become indispensable in minute processing processes. Such anti-reflection films include underlayer anti-reflection films formed between resists and substrates.
On the other hand, when substrates such as silicon oxide films are processed, resist patterns are used as masks. The resist film thickness decreases with miniaturization, so that the masking property of the resists becomes insufficient. It becomes therefore difficult to process the substrates without damaging them. Then, a process is employed in which a resist pattern is first transferred to an underlayer film for processing a substrate, followed by dry etching of the substrate using the underlayer film as a mask. The term “underlayer film for processing the substrate” means a film also serving as the underlayer anti-reflection film or a film formed under the anti-reflection film. In this process, the etching rate of the resist is close to that of the underlayer film for processing the substrate. It is therefore necessary to form a mask for processing the underlayer film (a resist underlayer film) between the resist and t e underlayer film. That is to say, a multilayer film composed of the underlayer film for processing the substrate, the resist underlayer film and the resist is formed on the substrate.
The characteristics required for the resist underlayer films are that the resist patterns having no footing can be formed, that the resist underlayer films are excellent in adhesion to the resists, and that when the underlayer films for processing the substrates are processed, the resist underlayer films have the sufficient masking property. However, materials meeting all of these requirements have not been discovered yet.
SUMMARY OF THE INVENTION
An object of the invention is to provide a composition for a resist underlayer film which is not separated from a resist, improves the reproducibility of a resist pattern, and has the resistance to oxygen ashing in removing an alkali and the resist by providing the resist underlayer film under the resist for solving the problems described above.
Another object of the invention is to provide a method for producing the above-mentioned composition.
According to the invention, there is provided a composition for a resist underlayer film comprising:
both or either of a hydrolysate and a condensate of (A) at least one compound (hereinafter referred to as compound (1)) selected from the group consisting of (A-1) a compound represented by the following general formula (1):
R
1
a
Si(OR
2
)
4−a
  (1)
wherein R
1
represents a hydrogen atom, a fluorine atom or a univalent organic group, R
2
represents a univalent organic group, and a represents an integer of 0 to 2, and (A-2) a compound represented by the following general formula (2):
R
2
b
(R
4
O)
3−b
Si—(R
7
)
d
—Si(OR
5
)
3−c
R
6
c
  (2)
wherein R
3
, R
4
, R
5
and R
6
, which may be the same or different, each represent univalent organic groups, b and c, which may be the same or different, each represent integers of 0 to 2, R
7
represents an oxygen atom or —(CH
2
)n—, d represents 0 or 1, and n represents an integer of 1 to 6; and
(B) a compound generating an acid by ultraviolet irradiation and/or heating (hereinafter referred to as an “acid generating agent”).
The invention further provides a method for producing the composition described above.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Component (A)
Component (A-1)
In the above-mentioned general formula (1), the univalent organic groups represented by R
1
and R
2
include alkyl, aryl, allyl and glycidyl groups. Further, in general formula (1), R
1
is preferably a univalent organic group, particularly an alkyl or phenyl group.
Here, the alkyl groups include methyl, ethyl, propyl and butyl, and each preferably has 1 to 5 carbon atoms. These alkyl groups may be straight-chain or branched, or hydrogen atoms may be substituted by fluorine atoms.
In general formula (1), the aryl groups include phenyl, naphthyl, methylphenyl, ethylphenyl, chlorophenyl, bromophenyl and fluorophenyl.
Specific examples of the compounds represented by general formula (1) include trimethoxysilane, triethoxy-silane, tri-n-propoxysilane, tri-iso-propoxysilane, tri-n-butoxysilane, tri-sec-butoxysilane, tri-tert-butoxysilane, triphenoxysilane, fluorotrimethoxysilane, fluorotriethoxysilane, fluorotri-n-propoxysilane, fluorotri-iso-propoxysilane, fluorotri-n-butoxysilane, fluorotri-sec-butoxysilane, fluorotri-tert-butoxysilane, fluorotriphenoxy-silane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxy-silane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, tetraphenoxysilane, methyltrimethoxysilane, methyltri-ethoxysilane, methyltri-n-propoxysilane, methyltri-iso-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, methyltri-tertbutoxysilane, methyltri-phenoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltri-n-propoxysilane, ethyltriiso-propoxysilane, ethyltri-n-butoxysilane, ethyltri-sec-butoxysilane, ethyl-tri-tert-butoxysilane, ethyltriphenoxysilane, vinyltri-methoxysilane, vinyltriethoxysilane, vinyltri-n-propoxy-silane, vinyltriiso-propoxysilane, vinyltri-n-butoxy-silane, vinyltri-sec-butoxysilane, vinyltri-tert-butoxy-silane, vinyltriphenoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltri-n-propoxysilane, propyltri-iso-propoxysilane, n-propyltri-n-butoxysilane, n-propyltri-sec-butoxysilane, n-propyltri-tert-butoxy-silane, n-propyltriphenoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, i-propyltri-n-propoxysilane, i-propyltri-iso-propoxysilane, i-propyltri-n-butoxysilane, propyltri-sec-butoxysilane, i-propyltri-tert-butoxy-silane, i-propyltriphenoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-butyltri-n-propoxysilane, butyltri-iso-propoxysilane, n-butyltri-n-butoxysilane, n-butyltri-sec-butoxysilane, n-butyltri-tert-butoxysilane, n-butyltriphenoxysilane, sec-butyltrimethoxysilane, sec-butyl-i-triethoxysilane, sec-butyltri-n-propoxysilane, sec-butyltri-iso-propoxysilane, sec-butyltri-n-butoxy-silane, sec-butyltri-sec-butoxysilane, sec-butyltri-tertbutoxysilane, sec-butyltriphenoxysilane, t-butyltrimethoxysilane, t-butyltriethoxysilane, t-butyltri-n-propoxysilane, t-butyltri-iso-propoxysilane, t-butyltri-n-butoxysilane, t-butyltri-sec-butoxysilane, t-butyltri-tertbutoxysilane, t-butyltriphenoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltri-n-propoxysilane, phenyltri-iso-propoxysilane, phenyltri-n-butoxysilane, phenyltri-sec-butoxysilane, phenyltri-tert-butoxysilane, phenyltriphenoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, &ggr;-aminopropyltrimethoxysilane, &ggr;-aminopropyltriethoxysilane, &ggr;-glycidoxypropyltrimethoxysilane, &ggr;-glycidoxypropyltriethoxysilane, &ggr;-trifluoropropyltrimethoxysilane, &ggr;-trifluoropropyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-propoxysil

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composition for resist underlayer film and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composition for resist underlayer film and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition for resist underlayer film and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3118793

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.