Coating installation for disk-form workpieces

Chemistry: electrical and wave energy – Processes and products – Coating – forming or etching by sputtering

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S298230, C204S298250, C204S298260, C204S298270, C204S298280, C427S445000, C118S729000, C118S730000

Reexamination Certificate

active

06656330

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention builds on the task (1) to reduce in the case of coating installations, for example with virtually continuous 24-hour production operation, the shutdown times for maintenance, such as, for example, for replacing material sources consumed during the coating process or other installation parts such as coating masks. Therein (2) the coating installation should be constructionally as simple and compact as feasible.
Coating installations conventionally comprise a transport chamber, wherein, in the simplest case, workpieces are transported from an input/output lock station to a coating station. They are therein coated and subsequently transported back to the input/output lock station. Based on the requirement (2) for the simplest possible concept, a pump unit is provided via a pump opening on the transport chamber, which simultaneously handles the evacuation of the treatment station. Thus, in installations of this type the transport chamber is also flooded during the flooding of the treatment station. Otherwise the coating station would need to be compartmentalizable with respect to the transport chamber by employing a relatively complicated valve device.
A critical extension of the production shutdown times during the flooding of coating station and transport chamber results therefrom that, together with the transport chamber, at least portions of the pump unit flanged onto the pump opening are flooded. This leads, for one, to relatively long reconditioning times for the resumption of operation. For another, when, for example, turbovacuum pumps are provided on the pump unit, the latter would have to be compartmentalized against the flooding, which requires complicated and expensive compartmentalization valves.
SUMMARY OF THE INVENTION
The above cited task (1), namely minimizing shutdown times simultaneously with generating (2) as simple as feasible an installation configuration with high production rate, is realized through an installation according to the wording of claim
1
.
Consequently, the coating installation according to the invention comprises a transport chamber with a workpiece transport configuration. The latter has at least two transport rams connected with a rotational axle driven under control, with transport rams, driven under control, which can be linearly extended and retracted. The transport rams are therein in the shell line of one and the same rotation body about the rotational axis and are, with respect to a given direction on the rotational axis, extendable and retractable in the same direction. Each ram bears at the end a workpiece receiver. On the transport chamber are furthermore provided at least two operating openings via which the transport chamber communicates with stations, of which one is a coating station. The surface normals of the clearance areas of said operating openings are therein oriented in the direction of shell lines of the rotation body.
Further provided on the coating installation according to the invention is a pump unit, communicating with the transport chamber via a pump opening, which is effective for the transport chamber as well as also for the coating station.
At least one of said rams has at the end a closure configuration or can be equipped therewith. In order to optimize the simple installation concept which, in all implementations of the coating installation according to the invention, permits extremely high production rates, also with respect to necessary production interruptions in connection with flooding, while maintaining the simple constructional concept, the pump opening is disposed on the chamber such that said ram can be oriented toward the pump opening, wherein the closure configuration, with orientation of said ram toward the pump opening and subsequently its moving, enters with the pump opening into an operational connection forming a sealed closure.
With respect to the fundamental structure of the transport chamber with said rams, reference is made in particular to EP 0 518 109 corresponding to U.S. Pat. No. 5,245,736 and to DE-GM 29 716 440 corresponding to U.S. Pat. No. 6,416,640.
In a first embodiment of the coating installation according to the invention the rotation body is a cylinder or a cone with an angle of aperture<90°, and said rams, correspondingly, can be extended and retracted under linear driving parallel or at an obtuse angle with respect to the rotational axis.
But in a preferred embodiment the rotation body is a special case of a cone, namely with a 90° aperture angle &phgr;, and the rams project radially from the rotational axis. The operating openings and the pump opening comprise therein surface normals which are in the rotational plane of the rams about the rotational axis.
Consequently, in the last mentioned, preferred embodiment the workpiece transport configuration has at least two transport rams projecting radially from a rotational axle driven under control and linearly extendable and retractable driven under control, which thus are in a plane perpendicular to the rotational axis. Again, at the end on each ram are provided corresponding workpiece receivers. Furthermore, in addition, at least two operating openings, now disposed with the surface normals of the clearance openings in said plane, are provided on the transport chamber, via which the latter communicates with stations, of which, furthermore, one is a workpiece coating station. As in all embodiments of the coating installation according to the invention, here also a pump unit is provided which, effective for the transport chamber as well as also for the coating station, communicates via a pump opening with the transport chamber.
As stated, the pump opening is disposed on the transport chamber such that at least one of said rams, preferably each, can be oriented toward it. At least one of said rams comprises the closure configuration or can be equipped therewith such that, with the orientation toward the pump opening by being moved, can here also enter with the pump opening into an operational connection forming a sealed closure.
If, in the preferred embodiment of the coating installation according to the invention, and with respect to the rotational axis, the rams are directed radially, the surface normal of the clearance area of the pump opening is consequently also disposed in the rotational plane of said rams.
While it is in principle known from DE 19 742 923 to close the pump opening to one pump unit for flooding a transport chamber, the transport chamber provided on the installation known therefrom, however, comprises as a workpiece transport configuration a solid carrier plate driven about a rotational axis, on whose one plate side, peripheral with respect to the rotational axis, the workpieces are positioned. By axial raising or lowering of the carrier plate, all workpieces, given the corresponding rotational angle orientation, are simultaneously moved toward or moved away with respect to the stations flanged onto the corresponding front face of the transport chamber wall. The plate surface opposing the transport surface of the carrier plate in the case of flooding of the transport chamber, acts onto a pump opening such that it closes it. This pump opening is disposed on the front face, with the front face of the transport chamber opposing the stations. This installation meets none of the requirements according to the task made of the installation according to the invention. For example it is evident:
the lifting mechanism for the transport plate must be layed out such that in production it can not only supply the stations with workpieces, but, in the much rarer case, can also be retracted again for the purpose of closing the pump opening: the entire installation must be developed especially for this “rare” case alone.
Since this additional lift can only be minimized within limits, namely to the extent that the pump effect is not to be choked through the transport plate in production position, this leads to structural enlargement and further complication of th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Coating installation for disk-form workpieces does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Coating installation for disk-form workpieces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coating installation for disk-form workpieces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3179140

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.