Carrier head with a flexible membrane for a chemical...

Abrading – Machine – Rotary tool

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S388000

Reexamination Certificate

active

06277010

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to chemical mechanical polishing of substrates, and more particularly to a carrier head for a chemical mechanical polishing system.
Integrated circuits are typically formed on substrates, particularly silicon wafers, by the sequential deposition of conductive, semiconductive or insulative layers. After each layer is deposited, the layer is etched to create circuitry features. As a series of layers are sequentially deposited and etched, the outer or uppermost surface of the substrate, i.e., the exposed surface of the substrate, becomes increasingly non-planar. This non-planar outer surface presents a problem for the integrated circuit manufacturer. If the outer surface of the substrate is non-planar, then a photoresist layer placed thereon is also non-planar. A photoresist layer is typically patterned by a photolithographic apparatus that focuses a light image onto the photoresist. If the outer surface of the substrate is sufficiently non-planar, then the maximum height difference between the peaks and valleys of the outer surface may exceed the depth of focus of the imaging apparatus, and it will be impossible to properly focus the light image onto the outer substrate surface.
It may be prohibitively expensive to design new photolithographic devices having an improved depth of focus. In addition, as the feature size used in integrated circuits becomes smaller, shorter wavelengths of light must be used, resulting in a further reduction of the available depth of focus. Therefore, there is a need to periodically planarize the substrate surface to provide a substantially planar layer surface.
Chemical mechanical polishing (CMP) is one accepted method of planarization. This planarization method typically requires that the substrate be mounted to a carrier or polishing head. The exposed surface of the substrate is then placed against a rotating polishing pad. The carrier provides a controllable load, i.e., pressure, on the substrate to press it against the polishing pad. In addition, the carrier may rotate to provide additional motion between the substrate and polishing pad. A polishing slurry, including an abrasive and at least one chemically-reactive agent, may be distributed over the polishing pad to provide an abrasive chemical solution at the interface between the pad and substrate.
A CMP process is fairly complex, and differs from simple wet sanding. In a CMP process, the reactive agent in the slurry reacts with the outer surface of the substrate to form reactive sites. The interaction of the polishing pad and the abrasive particles with the reactive sites results in polishing.
An effective CMP process should have a high polishing rate and generate a substrate surface that is finished (lacks small-scale roughness) and flat (lacks large-scale topography). The polishing rate, finish and flatness are determined by the pad and slurry combination, the relative speed between the substrate and pad, and the force pressing the substrate against the pad. Because inadequate flatness and finish can create defective substrates, the selection of a polishing pad and slurry combination is usually dictated by the required finish and flatness. Given these constraints, the polishing rate sets the maximum throughput of the polishing apparatus.
The polishing rate depends upon the force with which the substrate is pressed against the pad. Specifically, the greater this force, the higher the polishing rate. If the carrier head applies a non-uniform load, i.e., if the carrier head applies more force to one region of the substrate than to another, then the high pressure regions will be polished faster than the low pressure regions. Therefore, a non-uniform load may result in non-uniform polishing of the substrate.
One problem that has been encountered in CMP is that the edge of the substrate is often polished at a different rate (usually faster, but occationally slower) than the center of the substrate. This problem, termed the “edge effect”, may occur even if the load is uniformly applied to the substrate. The edge effect typically occurs in the perimeter portion, e.g., the outermost five to ten millimeters, of the substrate. The edge effect reduces the overall flatness of the substrate, makes the perimeter portion of the substrate unsuitable for use in integrated circuits, and decreases yied.
Therefore, there is a need for a CMP apparatus that optimizes polishing throughput while providing the desired flatness and finish. Specifically, the CMP apparatus should have a carrier head which provides substantially uniform polishing of a substrate.
SUMMARY OF THE INVENTION
In one aspect, the invention is directed to a carrier head for use in a chemical mechanical polishing system. The carrier head comprises a base and a flexible member connected to the base to define a first chamber, a second chamber and a third chamber. A lower surface of the flexible member provides a substrate receiving surface with an inner portion associated with the first chamber, a substantially annular middle portion surrounding the inner portion and associated with the second chamber, and a substantially annular outer portion surrounding the middle portion and associated with the third chamber. Pressures on the inner, middle and outer portions of the flexible member are independently controllable.
Implementations of the invention may include the following. The width of the outer portion may be significantly less than the width of the middle portion. The outer portion may have an outer radius approximately equal to or greater than 100 mm, such as 150 mm, and the width of the outer portion may be between about 4 and 20 mm, such as 10 mm. The flexible member may include an inner annular flap, a middle annular flap, and an outer annular flap, each flap being secured to a lower surface of the base to define the first, second and third chambers.
In another aspect, the carrier head comprises a flange attachable to a drive shaft, a base, a gimbal pivotally connecting the flange to the base, and a flexible member connected to the base and defining a chamber. A lower surface of the flexible member provides a substrate receiving surface. The gimbal includes an inner race connected to the base, an outer race connected to the flange to define a gap therebetween, and a plurality of bearings located in the gap.
Implementations of the invention may include the following.
A spring may urge the inner race and outer race into contact with the bearings, and an annular retainer may hold the bearings. A plurality of pins may extends vertically through a passage in the flange portion such that an upper end of each pin is received in a recess in the drive shaft and a lower end of each pin is received in a recess in the base portion to transfer torque from the drive shaft to the base. A retaining ring may be connected to the base to define, in conjunction with the substrate receiving surface, a substrate receiving recess.
In another aspect, the invention is directed to an assembly for use in a chemical mechanical polishing system. The assembly comprises drive shaft, a coupling slidably connected to the drive shaft, a carrier head secured to a lower end of the drive shaft to rotate with the drive shaft, a vertical actuator coupled to an upper end of the drive shaft to control the vertical position of the drive shaft and the carrier head, and a motor coupled to the coupling to rotate the coupling to transfer torque to the drive shaft.
Implementations of the invention may include the following. The drive shaft may extend through a drive shaft housing, and the vertical actuator and the motor may be secured to the drive shaft housing. The coupling may include an upper rotary ring surrounding the upper end of the drive shaft and a lower rotary ring surrounding the lower end of the drive shaft, a first bearing rotatably connecting the upper rotary ring to the drive shaft housing and a second bearing rotatably connecting the lower rotary ring to the drive shaft housing. The upper and lower rotar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Carrier head with a flexible membrane for a chemical... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Carrier head with a flexible membrane for a chemical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Carrier head with a flexible membrane for a chemical... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2474696

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.