Bipolar transistor with lattice matched base layer

Semiconductor device manufacturing: process – Forming bipolar transistor by formation or alteration of... – Having heterojunction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S103000, C257S197000, C257S198000, C600S553000

Reexamination Certificate

active

10824697

ABSTRACT:
A semiconductor material which has a high carbon dopant concentration and is composed of gallium, indium, arsenic and nitrogen is disclosed. The material is useful in forming the base layer of gallium arsenide based heterojunction bipolar transistors because it can be lattice matched to gallium arsenide by controlling the concentration of indium and nitrogen. The disclosed semiconductor materials have a low sheet resistivity because of the high carbon dopant concentration obtained.

REFERENCES:
patent: 4518979 (1985-05-01), Dumke et al.
patent: 5371389 (1994-12-01), Matsuno et al.
patent: 5429957 (1995-07-01), Matsuno et al.
patent: 5571732 (1996-11-01), Liu
patent: 5606185 (1997-02-01), Nguyen et al.
patent: 5814843 (1998-09-01), Ohkubo
patent: 5858818 (1999-01-01), Ro et al.
patent: 5903018 (1999-05-01), Shimawaki
patent: 6031256 (2000-02-01), Liu et al.
patent: 6150677 (2000-11-01), Tanaka et al.
patent: 6285044 (2001-09-01), Bhat
patent: 6765242 (2004-07-01), Chang et al.
patent: 6847060 (2005-01-01), Welser et al.
patent: 2001/0040244 (2001-11-01), Fitzgerald et al.
patent: 2002/0027232 (2002-03-01), Shigematsu et al.
patent: 2002/0102847 (2002-08-01), Sharps et al.
patent: 2005/0020033 (2005-01-01), Specht et al.
patent: 2 795 871 (2001-01-01), None
patent: 11312685 (1999-11-01), None
patent: WO 01/03194 (2001-01-01), None
patent: WO 02/43155 (2002-05-01), None
Chang, et al., “InGaAsN/AlGaAs P-n-p heterojunction bipolar transistor,”Applied Physics Letters, 79(19):2788-2790 (2000).
Welser, et al., “Low VbeGaInAsN Base Heterojunction Bipolar Transistors,”IEICE Trans. Electron., E84-C(10): 1389-1393 (2001).
Li, et al., “DC characteristics of MOVPE-grown Npn InGaP/InGaAsN DHBTs,”Electronics Letters, 36(1): 81-83 (2000).
Kohama, et al., “Using Carbon Tetrachloride for Carbon Doping AlxGa1-xAs Grown by Metalorganic Chemical Vapor Deposition,”Jpn. J. Appl. Phys., 34(7A): 3504-3505 (1995).
Sugiura, et al., “Characterization of heavily carbon-doped InGaAsP layers grown by chemical beam epitaxy using tetrabromide,”Applied Physics Letters, 73(17):2482-2484 (1998).
Bhat, et al., “Growth of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition,”Journal of Crystal Growth, 195: 427-437 (1998).
Chang, et al., “InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor,”Applied Physics Letters, 76(16):2262-2264 (2000).
Welser, R.E., et al., “Role of Neutral Base Recombination in High Gain AlGaAs/GaAs HBT's,”IEEE Transactions on Electron Devices, 46(8):1599-1607(1999).
Ahmari, D.A., et al., “High-speed InGaP/GaAs HBT's with a Strained InxGa1-xAs Base,”IEEE Electron Device Letters,17(5):226-228(1996).
Welser, R.E., et al., “Turn-on Voltage Investigation of GaAs-Based Bipolar Transistors with Ga1-xInxAs1-yNyBase Layers,”IEEE Electron Device Letters, 21(12):1-4(2000).
Low, T., et al., “InGaP HBT technology for RF and microwave instrumentation,”Solid-State Electronics, 43:1437-1444(1999).
Liu, W., et al., “Current Transport Mechanism in GaInP/GaAs Heterojunction Bipolar Transistors,”IEEE Transactions on Electron Devices, 40(8):1378-1383(1993).
Lu, Z.H., et al., “Determination of band gap narrowing and hole density for heavily C-doped GaAs by photoluminescence,”Appl. Phys. Lett., 64(1): 88-90(1994).
Welser, R.E., et al., “High Performance Al0.35Ga0.65As/GaAs HBT's,”IEEE Electron Device Letters, 21(5):196-199(2000).
Welser, R.E., et al., “Base Current Investigation of the Long-Term Reliability of GaAs-Based HBTs,”GaAs Mantech, (2000).
Patton, G.L., et al. “Graded-SiGe-Base, Poly-Emitter Heterojunction Bipolar Transistors,”IEEE Electron Device Letters, 10(12):534-536(1989).
Ida, M., et al., “InP/InGaAs DHBTs with 341-Ghz fTat high current density of over 800 kA/cm2,” IEEE, (2001).
Kroemer, H., “Heterostructure bipolar transistors: What should we build?”J. Vac. Sci. Technol., B1(2):126-130(1983).
Fujihara, A., et al., “High-speed InP/InGaAs DHBTs with Ballistic Collector Launcher Structure,”IEEE, (2001).
Nakahara, K., et al., “Continuous-wave operation of long-wavelength GaInNAs/GaAs quantum well laser,”Electronic Letters, 32(17): 1585-1586(1996).
Mochizuki, K., et al., “GaInP/GaAs Collector-Up Tunneling-Collector Heterojunction Bipolar Transistors (C-Up TC-HBTs): Optimization of Fabrication Process and Epitaxial Layer Structure for High-Efficiency High-Power Amplifiers,”Transactions on Electron Devices, 47(12):2277-2283(2000).
Pan, N., et al., “Pseudomorphic In-Graded Carbon Doped GaAs Base Heterojunction Bipolar Transistors by Metal Organic Chemical Vapor Deposition,”Journal of Electronic Materials, 25(7):13 (1996).
Ohkubo, M., et al., “Compositionally Graded C-doped In1-xGaxAs Base in InP/InGaAs D-HBTs Grown by MOCVD with Low Base Sheet Resistance and High Current Gain”,IEEE, pp. 641-644, 1997.
Stockman, S. A., et al., “Carbon Doping of InxGa1-xAs By MOCVD Using CCI4”, pp. 40-43, no date given.
Keiper, D., et al., “Metalorganic Vapour Phase Epitaxy Growth of InP-based Heterojunction Bipolar Transistors with Carbon Doped InGaAs Base Using Tertiarybutylarsine and Tertiarybutylphosphine in N2Ambient”, XP-001030248,Jpn. J. Appl. Phys., vol. 39:6162-6165 (2000).
Stillman, G. E., et al., “Carbon-doped InGaAs grown by MOCVD for InP/InGaAs heterojunction bipolar transistors”,Inst. Phys. Conf. Ser. No. 129:687-692 (1992).
Kroemer, H., “Two Integral Relations Pertaining to the Electron Transport Through a Bipolar Transistor With a Nonuniform Energy Gap in the Base Region,”Solid-State Electronic, 28(11):1101-1103 (1985).
Maziar, C. M., and Lundstrom, M. S., “On the Estimation of Base Transit Time in AlGaAs/GaAs Bipolar Transistors,”IEEE Electron Device Lett. 8: 90-91 (1987).
Stockman, S. A., et al., “Growth of carbon-doped p-type InxGa1-xAs (0<x≦0.53) by metalorganic chemical vapor deposition,”Appl. Phys. Lett60(23):2903-2905 (1992).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bipolar transistor with lattice matched base layer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bipolar transistor with lattice matched base layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bipolar transistor with lattice matched base layer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3775250

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.