Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material
Reexamination Certificate
2005-10-18
2005-10-18
Smoot, Stephen W. (Department: 2813)
Semiconductor device manufacturing: process
Coating with electrically or thermally conductive material
To form ohmic contact to semiconductive material
C438S643000, C438S644000, C438S648000, C438S653000, C438S654000, C438S656000, C438S680000, C257S751000, C257S753000, C257S761000, C257S762000, C257S764000
Reexamination Certificate
active
06955986
ABSTRACT:
A process produces a layer of material which functions as a copper barrier layer, adhesion layer and a copper seed layer in a device of an integrated circuit, particularly in damascene or dual damascene structures. The method includes a step of depositing a diffusion barrier layer over a dielectric, a step of depositing a layer of graded metal alloy of two or more metals, and a step of depositing a copper seed layer, which step is essentially a part of the step of depositing the alloy layer.
REFERENCES:
patent: 4058430 (1977-11-01), Suntola et al.
patent: 4486487 (1984-12-01), Skarp
patent: 4747367 (1988-05-01), Posa
patent: 4761269 (1988-08-01), Conger et al.
patent: 5071670 (1991-12-01), Kelly
patent: 5294286 (1994-03-01), Nishizawa et al.
patent: 5306666 (1994-04-01), Izumi
patent: 5449314 (1995-09-01), Meikle et al.
patent: 5769950 (1998-06-01), Takasu et al.
patent: 5795495 (1998-08-01), Meikle
patent: 5916365 (1999-06-01), Sherman
patent: 6174799 (2001-01-01), Lopatin et al.
patent: 6174809 (2001-01-01), Kang et al.
patent: 6200893 (2001-03-01), Sneh
patent: 6294836 (2001-09-01), Paranjpe et al.
patent: 6329704 (2001-12-01), Akatsu et al.
patent: 6362526 (2002-03-01), Pramanick et al.
patent: 6365502 (2002-04-01), Paranjpe et al.
patent: 6368954 (2002-04-01), Lopatin et al.
patent: 6368961 (2002-04-01), Lopatin et al.
patent: 6399522 (2002-06-01), Tsan et al.
patent: 6607976 (2003-08-01), Chen et al.
patent: 6693356 (2004-02-01), Jiang et al.
patent: 2001/0041250 (2001-11-01), Werkhoven et al.
patent: 2002/0006468 (2002-01-01), Paranjpe et al.
patent: 2002/0102838 (2002-08-01), Paranjpe et al.
patent: 2003/0201537 (2003-10-01), Lane et al.
patent: 1063687 (2000-12-01), None
patent: 2372042 (2002-08-01), None
patent: 2372043 (2002-08-01), None
patent: 2372044 (2002-08-01), None
patent: 2000058777 (2000-02-01), None
patent: WO 00/54320 (2000-09-01), None
patent: WO 00/61833 (2000-10-01), None
patent: WO 01/17692 (2001-03-01), None
patent: WO 01/66832 (2001-09-01), None
patent: WO 200199166 (2001-12-01), None
Abeles, et al.,Amorphous Semiconductor Superlattices, Physical Review Letters, Vo. 51, No. 21, Nov. 21, 1983, pp. 2003-2008.
Bai, “High K Gate Stack for Sub-0.1 UM CMOS Technology,”Electrochemical Society Proceedings, vol. 99-100, pp. 39-44 (1999).
Del Prado, et al., “Full composition range silicon oxynitride films deposited by ECR-PECVD at room temperature,”Thin Solid Films, vol. 344, pp. 437-440 (1999).
Desu, et al,Enhanced Dielectric Properties of Modified Ta2O5Thin Films, Mat Res. Innovat (1999) 2:299-302.
Hiltunen, et al.,Nitrades of Titanium, Niobium, Tantalum and Molybdenum Grown as Thin Films by the Atomic Layer Epitaxy Method, Thin Solid Films, 168 (1988) pp. 149-154.
Ihanus, et al,ALE Growth of ZnS1-xSexThin Films by Substrating Surface Sulfur with Elemental Selenium, Applied Surface Science 112 (1997) 154-158.
Kaizuka, et al.,Conformal Chemical Vapor Deposition TiN(111)Film Formation as an Underlayer of Al for Highly Reliable Interconnects, jpn. J. Appl. Phys. vol. 33 (1994) pp. 470-474.
Kikkawa, et al.,A Quarter-Micrometer Interconnection Technology Using a TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti Multilayer Structure, IEEE Transactions on Electron Devices, vol. 40, No. 2, Feb. 1993, pp. 296-302.
Kikkawa, et al.,Al-Si-Cu/TiN Multilayer Interconnection and Al-Ge Reflow Sputtering Technologies for Quarter-Micron Devices, SPIE vol. 1805 Submicrometer Metallization (1992), pp. 54-64.
Kim, et al.,The Effects of Substrate and Annealing Ambient on the Electrical Properties of Ta2O5Thin Films Prepared By Plasma Enhanced Chemical Vapor Deposition, Thin Film Solids 253 (1994) pp. 435-439.
Kukli, et al.,Atomic Layer Epitxy Growth of Tantalum Oxide Thin Films from Ta(OC2H5)and H2O, J. Electrochem. Soc. vol. 142, No. 5, May 1995 pp. 1670-1674.
Leskelä, et al.,Atomic Layer Epitaxy in Deposition of Various Oxide and Nitride Thin Films, Journal De Physique IV, Colloque C5, Supplement au Journal de Physique II, vol. 5, Jun. 1995, pp. C5-937—C5-951.
Lucovsky, “Integration of Alternative High-K Gate Dielectrics into Aggressively Scaled CMOS Si Devices: Chemical Bonding Constraints at Si-Dielectric Interfaces,” Electrochemical Society Proceedings, vol. 99-10, pp. 69-80 (1999).
Malti, et al.; “Improved ultrathin oxynitride formed by thermal nitridation and low pressure chemical vapor deposition process,”Applied Physics Letter, vol. 61, No. 15, pp. 1790-1792 (1992).
Martensson, et al.,Use of Atomic Layer Epitaxy for Fabrication of Si/TiN/Cu Structures, J. Vac Sci. Technol.B 17(5), Sep./Oct. 1999, pp. 2122-2128.
Min, et al.,Atomic Layer Deposition of TiN Films by Alternate Supply of Tetrakis(ethylmethylamino)-Titatium and Ammonia, Jpn. J. Appl. Phys. vol. 37 (1998) pp. 4999-5004.
Min, et al.,Atomic Layer Deposition of TiN Thin Films by Sequential Introduction of Ti precursor and NH3. Mat. Res. Soc. Symp. Proc. vol. 514 1998, pp. 337-342.
Nakajima, et al., “Atomic-layer-deposited silicon-nitride/SiO2stacked gate dielectrics for highly reliable ≯-metal-oxide-semiconductor filed-effect transistors,” Applied Physics Letters, vol. 77, No. 18, pp. 2855-2857 (2000).
Nakajima, et al., “Low-temperature formation of silicon nitride gate dielectrics by atomic-layer deposition,”Applied Physics Letters, vol. 79, No. 5, pp. 665-667 (2001).
Niinistö, et al.,Synthesis of Oxide Thin Films and Overlayers by Atomic Layer Epitaxy for Advanced Applications, Materials Science and Engineering B41 (1996) 23-29.
Ritala, et al.,Atomic Layer Epitaxy Growth of tiN Thin Films from Til4and NH3, J. Electrochemical Soc., vol. 145, No. 8, Aug. 1998 pp. 2914-2920.
Ritala, et al., “Controlled Growth of TaN, Ta3N5, and TaOxNyThin Films by Atomic Layer Deposition,”Chem. Mater., vol. 11, pp. 1712-1718 (1999).
Ritala, et al,Perfectly Conformal TiN and Al2O3Films Deposited by Atomic Layer Deposition, Communications, Chemical Vapor Deposition 1999, 5, No. 1, pp. 7-9.
Ritala, et al.,Zirconium Dioxide Thin Films Deposited by ALE Using Zirconium Tetrachloride as Precursor, Applied Surface Science, 75 (1994( pp. 333-340.
Sakaue, et al.,Digital Chemical Vapor Deposition of SiO2Using a Repetitive Reaction of Triethylsilane/Hydrogen and Oxidation, Japanese Journal of Applied Physics, vol. 30, No. 18, Jan. 1990, pp. L124-L127.
Singer,Atomic Layer Deposition Targets Thin Films, Semiconductor International, Sep. 1, 1999, 1 page.
Sneh, et al.,Atomic Layer Growth of SiO2on Si(100)Using SiCl4and H2O in a Binary Reaction Sequence, Surface Science 334 (1995) 135-152.
Tiitta, et al.,Preparation and Characterization of Phosphorus-Doped Aluminum Oxide Thin Films, Materials Research Bulletin, vol. 33, No. 9 pp. 1315-1323 1998.
Vehkarnäki, et al.,Growth of SrTiO3and BaTiO3Thin Films by Atomic Layer Deposition, Electronic and Solid State Letters, 2 (10) (1999) pp. 504-506.
Michael L. Wise, et al,Diethyldiethoxysilane as a New Precursor for SiO2Growth of Silicon, Mat. Res. Soc. Symp. Proc. vol. 334, (1994), pp/ 37-43.
ASM International N.V.
Knobbe Martens Olson & Bear LLP
LandOfFree
Atomic layer deposition methods for forming a multi-layer... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Atomic layer deposition methods for forming a multi-layer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Atomic layer deposition methods for forming a multi-layer... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3461438