Antireflective coating compositions comprising photoacid...

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Forming nonplanar surface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S156000, C430S326000, C430S510000

Reexamination Certificate

active

06261743

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to compositions that reduce reflection of exposing radiation from a substrate back into an overcoated photoresist layer. More particularly, the invention relates to antireflective coating compositions that contain a photoacid generator compound that can reduce undesired footing or notching of an overcoated photoresist relief image.
2. Background Art
Photoresists are photosensitive films used for transfer of an image to a substrate. A coating layer of a photoresist is formed on a substrate and the photoresist layer is then exposed through a photomask to a source of activating radiation. The photomask has areas that are opaque to activating radiation and other areas that are transparent to activating radiation. Exposure to activating radiation provides a photoinduced chemical transformation of the photoresist coating to thereby transfer the pattern of the photomask to the photoresist coated substrate. Following exposure, the photoresist is developed to provide a relief image that permits selective processing of a substrate.
A photoresist can be either positive-acting or negative-acting. For most negative-acting photoresists, those coating layer portions that are exposed to activating radiation polymerize or crosslink in a reaction between a photoactive compound and polymerizable reagents of the photoresist composition. Consequently, the exposed coating portions are rendered less soluble in a developer solution than unexposed portions. For a positive-acting photoresist, exposed portions are rendered more soluble in a developer solution while areas not exposed remain comparatively less developer soluble. Photoresist compositions in general are known to the art and described by Deforest,
Photoresist Materials and Processes,
McGraw Hill Book Company, New York, ch. 2, 1975 and by Moreau,
Semiconductor Lithography, Principles, Practices and Materials,
Plenum Press, New York, ch. 2 and 4, both incorporated herein by reference for their teaching of photoresist compositions and methods of making and using the same.
A major use of photoresists is in semiconductor manufacture where an object is to convert a highly polished semiconductor slice, such as silicon or gallium arsenide, into a complex matrix of electron conducting paths, preferably of micron or submicron geometry, that perform circuit functions. Proper photoresist processing is a key to attaining this object. While there is a strong interdependency among the various photoresist processing steps, exposure is believed to be one of the more important steps in attaining high resolution photoresist images.
Reflection of activating radiation used to expose a photoresist often poses limits on resolution of the image patterned in the photoresist layer. Reflection of radiation from the substrate/photoresist interface can produce spatial variations in the radiation intensity in the photoresist, resulting in non-uniform photoresist linewidth upon development. Radiation also can scatter from the substrate/photoresist interface into regions of the photoresist where exposure is not intended, again resulting in linewidth variations. The amount of scattering and reflection will typically vary from region to region, resulting in further linewidth non-uniformity.
Reflection of activating radiation also contributes to what is known in the art as the “standing wave effect”. To eliminate the effects of chromatic aberration in exposure equipment lenses, monochromatic or quasi-monochromatic radiation is commonly used in photoresist projection techniques. Due to radiation reflection at the photoresist/substrate interface, however, constructive and destructive interference is particularly significant when monochromatic or quasi-monochromatic radiation is used for photoresist exposure. In such cases the reflected light interferes with the incident light to form standing waves within the photoresist. In the case of highly reflective substrate regions, the problem is exacerbated since large amplitude standing waves create thin layers of underexposed photoresist at the wave minima. The underexposed layers can prevent complete photoresist development causing edge acuity problems in the photoresist profile. The time required to expose the photoresist is generally an increasing function of photoresist thickness because of the increased total amount of radiation required to expose an increased amount of photoresist. However, because of the standing wave effect, the time of exposure also includes a harmonic component which varies between successive maximum and minimum values with the photoresist thickness. If the photoresist thickness is non-uniform, the problem becomes more severe, resulting in variable linewidths.
Variations in substrate topography also give rise to resolution-limiting reflection problems. Any image on a substrate can cause impinging radiation to scatter or reflect in various uncontrolled directions, affecting the uniformity of photoresist development. As substrate topography becomes more complex with efforts to design more complex circuits, the effects of reflected radiation become more critical. For example, metal interconnects used on many microelectronic substrates are particularly problematic due to their topography and regions of high reflectivity.
With recent trends towards high-density semiconductor devices, there is a movement in the industry to shorten the wavelength of exposure sources to deep ultraviolet (DUV) light (300 nm or less in wavelength), KrF excimer laser light (248.4 nm) and ArF excimer laser light (193 nm). The use of shortened wavelengths of light for imaging a photoresist coating has generally resulted in increased reflection from the upper resist surface as well as the surface of the underlying substrate. Thus, the use of the shorter wavelengths has exacerbated the problems of reflection from a substrate surface.
Another approach used to reduce the problem of reflected radiation has been the use of a radiation absorbing layer interposed between the substrate surface and the photoresist coating layer. See, for example, PCT Application WO 90/03598, EPO Application No. 0 639 941 A1 and U.S. Pat. Nos. 4,910,122, 4,370,405 and 4,362,809, all incorporated herein by reference for their teaching of antireflective (antihalation) compositions and the use of the same. Such layers have also been referred to as antireflective layers or antireflective compositions or “ARCs”.
In Shipley Company's European Application 542 008 A1 (incorporated herein by reference) highly useful antihalation (antireflective) compositions are disclosed that comprise a resin binder and a crosslinker compound.
While it has been found that prior antireflective compositions may be effective for many antireflective applications, prior compositions also may pose some potential performance limitations. e.g. when the antireflective compositions are used with resist compositions to pattern features of sub-micron or sub-half micron dimensions. In particular, use of at least some prior antireflective compositions has resulted in undercutting of a developed resist relief image, known in the art as “notching”. Another problem has been “footing”, i.e. the failure to clear during development that results in an upwardly tapering relief image sidewall. Both notching and footing can compromise the resolution of the image patterned onto the underlying substrate.
It thus would be desirable to have new antireflective coating compositions.
SUMMARY OF THE INVENTION
The present invention provides new light absorbing compositions suitable for use as antireflective coating compositions, particularly for deep UV applications. The antireflective compositions of the invention in general comprise a resin binder and a photoacid generator that can reduce undesired notching and footing of an overcoated photoresist relief image.
It is believed that acids produced by photoacid generators of photoresists, particularly the strong photogenerated acids of chemically-amplified resists, can be highly

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Antireflective coating compositions comprising photoacid... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Antireflective coating compositions comprising photoacid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antireflective coating compositions comprising photoacid... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2540384

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.