Active solid-state devices (e.g. – transistors – solid-state diode – Housing or package – Multiple housings
Reexamination Certificate
1999-03-22
2003-05-13
Clark, Sheila V. (Department: 2815)
Active solid-state devices (e.g., transistors, solid-state diode
Housing or package
Multiple housings
C257S777000
Reexamination Certificate
active
06563205
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
This invention generally relates to semiconductor devices. More particularly, this invention relates to a multichip module which employs stacked dice.
2. Background
Semiconductor devices are constructed from a silicon or gallium arsenide wafer through a process which comprises a number of deposition, masking, diffusion, etching, and implanting steps. Usually, many individual devices are constructed on the same wafer. When the devices are sawed into individual rectangular units, each takes the form of an integrated circuit (IC) die. In order to interface a die with other circuitry, normally it is mounted on a lead-frame paddle, in the case of single chip construction, or a multichip module substrate which in either case are surrounded by a number of lead fingers within a lead-frame. Hereafter general reference will be made by use of the word “substrate” as meaning either a paddle or a multichip module substrate or their functional equivalents.
The die-mounting substrate of a standard lead-frame is larger than the die itself, and it is surrounded by multiple lead fingers of individual leads. Bonding pads on the die are connected one by one in a wire-bonding operation to the lead-frame's lead finger pads with extremely fine gold or aluminum wire. The lead-frames are connected together for manufacturing purposes into a strip. Each strip generally consists of a linear series of interconnected lead-frames, typically ten in a row, one after another. Then the die and the portion of the lead-frame to which the die is attached, are encapsulated in a plastic or ceramic material to form the chip package, as are all other die/lead-frame assemblies on the lead-frame strip. A trim-and-form operation then separates the resultant interconnected packages and bends the leads of each package into the proper configuration.
In many cases, multichip devices can be fabricated faster and more cheaply than a corresponding single IC which incorporates the same functions. Current multichip module construction typically consists of a printed circuit board substrate to which a series of separate components are directly attached. This technology is advantageous because of the increase in circuit density achieved. With increased density comes improvements in signal propagation speed and overall device weight. While integrated circuit density has and continues to increase at a significant rate, the density of the interconnecting circuitry between a die and its leads, and between two components within a multichip module, has not kept pace. Consequently, interconnection density has become a significant limiting factor in the quest for miniaturization.
U.S. Pat. No. 5,012,323, issued Apr. 30, 1991, having a common assignee with the present application, discloses a pair of rectangular integrated-circuit dice mounted on opposite sides of the lead-frame. An upper, smaller die is back-bonded to the upper surface of the lead fingers of the lead-frame via a first adhesively coated, insulated film layer. The lower, slightly larger die is face-bonded to the lower surface of the lead extensions within the lower lead-frame die-bonding region via a second, adhesively coated, insulative, film layer. The wire-bonding pads on both the upper die and the lower die are interconnected with the ends of their associated lead extensions by gold or aluminum wire. The lower die needs to be slightly larger for accessibility to the die pads from above allowing gold wire connections to the lead extensions or fingers.
U.S. Pat. No. 4,996,587 shows a semiconductor chip package which uses a chip carrier to support the chips within a cavity. The chip carrier as shown in the figures has a slot that permits connection by wires to bonding pads which, in turn, connect to the card connector by conductors. An encapsulation material is placed only on the top surface of the chip in order to provide heat dissipation from the bottom surface when carriers are stacked.
Japanese Patent No. 56-62351(A) issued to Sano in 1981 discloses three methods of mounting two chips on a lead-frame and attaching the pair of semiconductor chips or pellets to a common lead-frame consisting of: (method 1) two chips mounted on two paddles; (method 2) one chip mounted over a paddle and one below not attached to the paddle; and (method 3) one chip attached above and one chip attached below a common paddle.
U.S. Pat. Nos. 5,323,060 and 5,291,061, both having a common assignee with the present application, teach arrangements of multichip stacked devices wherein a first die is attached to the substrate and wire bonded to the lead fingers, followed by a second die and so on. Both patents teach using an adhesive layer between two dice to provide clearance between the dice for the loops of the wire bonds. The wire bonds attaching an underlying die must be completed before another die can be stacked on the stack. This means that the die attachment process must be repeated for each additional layer of the stack. In addition to adding extra process steps, there is a chance of damaging the underlying wires. Additionally, because the clearances between two adjacent dice in the stack are quite tight, small variances in the loop height and adhesive thickness can lead to a compound error which results with the wire loops of the underlying die contacting or interfering with the upper die.
SUMMARY OF THE INVENTION
Accordingly, it is one object of the present invention to provide a stacked multichip device which allows at least two dice in a stack to be attached to the substrate prior to wire bonding.
Is it another object of the present invention to provide a stacked multichip device which does not restrict the loop height for the underlying die, thereby allowing thinner layers of adhesive separating the dies, facilitating ease and efficiency of wire bonding and reducing the overall height of the assembly.
In accordance with the present invention, these and other objects are achieved by an offset die stacking arrangement in connection with at least one upper level die having a width which is less than the distance separating the opposing bonding sites of the underlying die. The lowest die is affixed to the substrate within a recess in the substrate. The recess can have a depth which is less than, equal to or greater than the thickness of the lower die. The upper die is fixed above the lower die and rotated within a plane parallel to the lower die through an angle which insures that none of the bonding sites of the lower die are obstructed by the upper die.
In the case where the recess depth is greater than the thickness of the lower die, the upper die does not contact the lower die. This may be advantageous where a particular die is prone to stress damage, which can be caused by different thermal expansion characteristics of the various material. Dependent upon the geometries of the dice, additional dice can be stacked in this manner until the addition of an additional die would interfere with wire bonding of any of the lower dice. Once the dice are fixed in this manner, the entire assembly is subjected to the wire bonding process with all of the bonds being made in the same step. The entire process can then be repeated using the upper most die of the previous stack as the substrate.
Additional objects, advantages and novel features of the invention will be set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
REFERENCES:
patent: 4996587 (1991-02-01), Hinrichsmeyer et al.
patent: 5012323 (1991-04-01), Farnworth
patent: 5198963 (1993-03-01), Gupta et al.
patent: 5291061 (1994-03-01), Ball
patent: 5313693 (1994-05-01), Cachier
patent: 5323060 (1994-06-01), Fogal et al.
patent: 5422435 (1995-06-01), Takiar et al.
patent: 5721452 (19
Ball Michael B.
Fogal Rich
Brantley Charles
Clark Sheila V.
LandOfFree
Angularly offset and recessed stacked die multichip device... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Angularly offset and recessed stacked die multichip device..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Angularly offset and recessed stacked die multichip device... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3074901