Analysis of semiconductor surfaces by secondary ion mass...

Radiant energy – Inspection of solids or liquids by charged particles – Positive ion probe or microscope type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S281000, C250S282000, C250S287000

Reexamination Certificate

active

06232600

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to the bulk measurement of trace contaminants in the surface layers of semiconductor wafers and dies, as well as material composition as a function of depth. More particularly, the invention pertains to improvements in methods and apparatus for mass spectrographic analysis of wafer and semiconductor die surface layers.
2. State of the Art
Secondary ion mass spectrometry (SIMS) is known as a method for determining particular constituents of a semiconductor material and providing a quantitative measurement of each.
Generally, this method involves bombarding a sample with “primary” ions, e.g. oxygen ions, measuring the intensities of secondary ions emitted or sputtered from the sample, and calculating the quantity of each conductive impurity based on the secondary emission as compared to the emission of standard materials. The sputtering and analysis is typically conducted in an ultra-high-vacuum environment.
SIMS may be used to achieve parts-per-billion (ppb) detection limits for bulk analysis and for determining material composition as a function of depth, provided the sample size is sufficiently large. The extreme sensitivity of SIMS results from its ability to “consume” large amounts of sample material, and thus process a large number of atoms to detect. However, because of the high rate of material consumption from a very small sample, dynamic SIMS is generally not appropriate for analysis of a very thin oxide surface layer of a semiconductor die and plurality of semiconductor dice in wafer form. Typical semiconductor contaminants may include lithium, boron, sodium, potassium, iron, sulfur, and carbon, all of which are found in the oxide layer on the semiconductor die surface. For the case of surface contaminants on silicon, the oxide layer is generally not more than about 15 Å thick. However, several minutes are required to obtain a sufficient number of data points at the required analyte masses, so the method is not useful for this application as the oxide layer will be quickly consumed.
It is desirable to be able to detect the concentrations of boron, lithium and sodium to less than about 1×10
6
atoms per square centimeter of semiconductor die surface area. These detection limits are considerably lower than currently obtainable.
U.S. Pat. No. 4,874,946 of Kazmerski discloses a method and apparatus for mapping the chemical composition of a solid device, using a rasterable SIMS mass analyzer.
U.S. Pat. No. 4,611,120 of Bancroft et al. discloses a method for suppressing molecular ions in the secondary ion mass spectra of a commercial SIMS instrument.
U.S. Pat. No. 5,521,377 of Kataoka et al. discloses a method for analysis of a solid in a planar or depth-wise direction using sputtering with two ionizing beams and detecting a two-atom composite ion.
U.S. Pat. Nos. 5,502,305 of Kataoka and 5,442,174 of Kataoka et al. disclose methods for analysis of a solid in a planar or depth-wise direction using sputtering with an ionizing beam and detecting a three-atom composite ion.
U.S. Pat. No. 5,332,879 of Radhakrishnan et al. discloses the use of a pulsed laser beam to remove contaminant metals from the surface of a polyimide layer. The disclosure indicated high surface metal removal with “minimal” removal of the polyimide, i.e. 250-500 Å per pulse. Such ablation rates are far greater than useful in the analysis of surface contaminants in semiconductor devices, where the surface oxide layer is typically only about 15 Å in depth.
Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) has also been found useful for bulk analysis of materials, provided the sample size is sufficiently large. The TOF-SIMS instrument directly measures the speeds of secondary ions by measuring the time taken to travel a given distance. Knowing the ion's energy, which is defined by the spectrometer's acceleration voltage, its mass can then be calculated. Typically, the time intervals are defined as the difference in time between pulsing the ion gun and the ion arrival at the detector. The mass range is then calibrated using at least three known mass peaks.
TOF-SIMS instruments have been found to provide some of the lowest detection limits in surface analysis, typically even lower than total reflection X-ray fluorescence (TXRF) with vapor phase decomposition (VPD). For the TOF-SIMS instrument, some representative detection limits are <1×10
8
atoms/cm
2
for lithium, boron and sodium, and <1×10
9
atoms/cm
2
for iron.
The TXRF instrument, on the other hand, is incapable of detecting elements lighter than sulfur, so critical elements such as sodium, carbon, lithium and boron cannot be detected.
Thus, the TOF-SIMS method would appear to be potentially useful for surface analysis, but instrumental constraints limit the sampling area to about 100×100 &mgr;m, and sampling of a relatively shallow oxide layer over the 100×100 &mgr;m area does not produce sufficient sample material for achieving the desired detection limits.
For TOF-SIMS, the detection limits are determined by the transmission and exceptance of the mass spectrometer, the sputter and ionization yield of the analyte, and the amount of material consumed during the analysis. These parameters may be categorized as the useful yield of the mass spectrometer and volume of analyte. Sampling of the maximum raster area of 100×100 &mgr;m to a depth of about 13 Å will produce about 3×10
11
particles. This is equivalent to between 0.3 to 30 (thirty) counts of a measured component at the 1 ppm level depending upon the ionization yields. It is critical to semiconductor device manufacture that bulk concentrations of some contaminants as low as 0.01 ppm and even 1 ppb be accurately detectable. Thus, current detection limits for certain contaminants must be reduced by a factor on the order of about 100 or more.
U.S. Pat. No. 5,087,815 of Schultz et al. discloses a method and apparatus for a TOF-SIMS isotopic ratio determination of elements on a surface.
SUMMARY OF THE INVENTION
The present invention provides a method for substantially increasing the sensitivity of a mass spectrographic analytical method for determining contaminant levels in the surface oxide layer of a semiconductor die or semiconductor dice in wafer form.
The present invention further provides a method for increasing the sensitivity of surface contaminant analysis of an oxide layer of a wafer by secondary ion mass spectroscopy (SIMS).
The present invention additionally provides a method for increasing the sensitivity of surface contaminant analysis by time-of-flight secondary ion mass spectroscopy (TOF-SIMS).
Related to the present invention is providing a method for determining the bulk concentration of contaminants in a surface oxide layer of a semiconductor material by SIMS or TOF-SIMS, wherein the surface area which may be sampled may be much greater than the electrostatic raster limits of the sputtering primary beam, and/or acceptance area limits of the spectrometer.
The present invention further includes apparatus for achieving the desired rastered sputtering and analysis of an enlarged area of a semiconductor wafer.
The present invention includes a method and means which enable sputtering to a uniform sampling depth and maintaining mass resolution irrespective of warpage or other non-planarity of a wafer. Thus, contaminant analysis of semiconductor wafers and semiconductor dice by SIMS or TOF-SIMS may be limited to the surface oxide layer. Additionally, advantages and novel features of this invention are set forth in part in the description infra. These advantages and features will become apparent to those skilled in the art upon examination of the following specification and drawings, or may be learned by practice of the invention. The various combinations of apparatus and/or methods which comprise the invention are pointed out in the appended claims.
In accordance with this disclosure, a first aspect of the invention co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Analysis of semiconductor surfaces by secondary ion mass... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Analysis of semiconductor surfaces by secondary ion mass..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analysis of semiconductor surfaces by secondary ion mass... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2505245

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.