Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design
Reexamination Certificate
2001-11-13
2004-06-29
Siek, Vuthe (Department: 2825)
Computer-aided design and analysis of circuits and semiconductor
Nanotechnology related integrated circuit design
C716S030000, C716S030000
Reexamination Certificate
active
06757886
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the manufacture of very large scale integrated (VLSI) circuit design and more specifically relates to generating phase shifted mask designs.
BACKGROUND OF THE INVENTION
A very large scale integrated (VLSI) complementary metal oxide semiconductor (CMOS) chip is manufactured on a silicon wafer by a sequence of material additions (i.e., low pressure chemical vapor depositions, sputtering operations, etc.), material removals (i.e., wet etches, reactive ion etches, etc.), and material modifications (i.e., oxidations, ion implants, etc.). These physical and chemical operations interact with the entire wafer. For example, if a wafer is placed into an acid bath, the entire surface of the wafer will be etched away. In order to build very small electrically active devices on the wafer, the impact of these operations has to be confined to small, well defined regions.
Lithography in the context of VLSI manufacturing of CMOS devices is the process of patterning openings in photosensitive polymers (sometimes referred to as photoresists or resists) which define small areas in which the silicon base material is modified by a specific operation in a sequence of processing steps. The manufacturing of CMOS chips involves the repeated patterning of photoresist, followed by an etch, implant, deposition, or other operation, and ending with the removal of the expended photoresist to make way for the new resist to be applied for another iteration of this process sequence.
The basic lithography system consists of a light source, a stencil or photo mask containing the pattern to be transferred to the wafer, a collection of lenses, and a means for aligning existing patterns on the wafer with patterns on the mask. The aligning may take place in an aligning step or steps and may be carried out with an aligning apparatus. Since a wafer containing from 50 to 100 chips is patterned in steps of 1 to 4 chips at a time, these lithography tools are commonly referred to as steppers. The resolution, R, of an optical projection system such as a lithography stepper is limited by parameters described in Raleigh's equation:
R=k&lgr;/NA,
where &lgr; represents the wavelength of the light source used in the projection system and NA represents the numerical aperture of the projection optics used. “k” represents a factor describing how well a combined lithography system can utilize the theoretical resolution limit in practice and can range from about 0.8 down to about 0.5 for standard exposure systems. The highest resolution in optical lithography is currently achieved with deep ultra violet (DUV) steppers operating at 248 nm. Wavelengths of 356 nm are also in widespread use and 193 nm wavelength lithography is becoming commonplace.
Conventional photo masks consist of chromium patterns on a quartz plate, allowing light to pass wherever the chromium has been removed from the mask. Light of a specific wavelength is projected through the mask onto the photoresist coated wafer, exposing the resist wherever hole patterns are placed on the mask. Exposing the resist to light of the appropriate wavelength causes modifications in the molecular structure of the resist polymers which, in common applications, allow a developer to dissolve and remove the resist in the exposed areas. Such resist materials are known as positive resists. (Negative resist systems allow only unexposed resist to be developed away.) The photo masks, when illuminated, can be pictured as an array of individual, infinitely small light sources which can be either turned on (points in clear areas) or turned off (points covered by chrome). If the amplitude of the electric field vector which describes the light radiated by these individual light sources is mapped across a cross section of the mask, a step function will be plotted reflecting the two possible states that each point on the mask can be found (light on, light off).
These conventional photo masks are commonly referred to as chrome on glass (COG) binary masks, due to the binary nature of the image amplitude. The perfectly square step function of the light amplitude exists only in the theoretical limit of the exact mask plane. At any given distance away from the mask, such as in the wafer plane, diffraction effects will cause images to exhibit a finite image slope. At small dimensions, that is, when the size and spacing of the images to be printed are small relative to the &lgr;/NA, electric field vectors of adjacent images will interact and add constructively. The resulting light intensity curve between the image features is not completely dark, but exhibits significant amounts of light intensity created by the interaction of adjacent features. The resolution of an exposure system is limited by the contrast of the projected image, that is, the intensity difference between adjacent light and dark image features. An increase in the light intensity in nominally dark regions will eventually cause adjacent features to print as one combined structure rather than discrete images.
The quality with which small images can be replicated in lithography depends largely on the available process window; that is, that amount of allowable dose and focus variation that still results in correct image size. Phase shifted mask (PSM) lithography improves the lithographic process window or allows operation at a lower k value by introducing a third parameter on the mask. The electric field vector, like any vector quantity, has a magnitude and direction, so, in addition to turning the electric field amplitude on and off, it can be turned on with a phase of about 0° or turned on with a phase of about 180°. This phase variation is achieved in PSMs by modifying the length that a light beam travels through the mask material. By recessing the mask to an appropriate depth, light traversing the thinner portion of the mask and light traversing the thicker portion of the masks will be 180° out of phase, that is, their electric field vector will be of equal magnitude but point in exactly the opposite direction so that any interaction between these light beams result in perfect cancellation. However, because the 180° phase transition forces a minimum in the image intensity, narrow dark lines will be printed. These unwanted residual phase images are erased using a trim mask, which is a second mask that transmits light only in regions left unexposed by the residual phase edge.
Alternating Phase Shifted Mask (altPSM) lithography is a resolution enhancement technique that is rapidly gaining acceptance as a viable solution to meet aggressive integrated circuit (IC) technology scaling time-lines. Delays in next generation optical and non-optical lithography tooling add vital importance to successful implementation of altPSM. AltPSM takes advantage of destructive interference of light to double the achievable resolution of an optical lithography system. The light interference is created by selectively manipulating the topography of the photomask to introduce an appropriate path-length difference in the imaging light. This manipulation of the mask topography requires phase information to be added to the circuit layout in the computer-aided design (CAD) system. Key to the successful implementation of altPSM is an efficient electronic design automation (EDA) tool that can convert circuit designs to altPSM layouts with minimal impact to layout design density or design complexity. The process of defining portions of the mask as 0° phase regions and other portions as 180° phase regions is generally referred to as phase coloring. Techniques for automatic phase coloring are known. For example, Kim et al. (U.S. Pat. No. 5,883,813) describes a method for automatically assigning binary phase coloring in altPSM designs by the use of net coloring. In the method of Kim et al., nets are defined as coupled intrusion pairs of phase shapes, where the phase of one shape determines the phase of the other shape within each intrusion pair. The intrusion pairs are shapes that are close enough that ligh
Fonseca Carlos A.
Graur Ioana
Lavin Mark A.
Liebmann Lars W.
Bowers Brandon
C. Li Todd M.
International Business Machines - Corporation
Siek Vuthe
LandOfFree
Alternating phase shift mask design with optimized phase shapes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Alternating phase shift mask design with optimized phase shapes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Alternating phase shift mask design with optimized phase shapes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3344736