Optical: systems and elements – Compound lens system – With curved reflective imaging element
Reexamination Certificate
2001-10-19
2004-03-23
Nguyen, Thong (Department: 2872)
Optical: systems and elements
Compound lens system
With curved reflective imaging element
C359S858000, C359S361000, C355S071000, C378S034000
Reexamination Certificate
active
06710917
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a microlithography objective for EUV lithography with a wavelength in the range of 10-30 nm for imaging an object field in an image field. The invention also provides for a projection exposure system and a chip manufacturing process.
2. Description of the Prior Art
Lithography with wavelengths <193 nm, particularly EUV lithography with &lgr;=11 nm or &lgr;=13 nm are discussed as possible techniques for imaging of structures <130 nm, most preferably <100 nm. The resolution of a lithographic system is given by the following equation:
RES=k
1
·&lgr;/NA,
where k
1
, denotes a specific parameter of the lithography process, &lgr; denotes the wavelength of the incident light and NA denotes the numerical aperture of the system on the image side.
For imaging systems in the EUV range, reflective systems with multiple layers are used substantially as optical components. Preferably, Mo/Be systems are used as multilayer systems for &lgr;=11 nm and Mo/Si systems are used for &lgr;=13 nm.
The reflectivity of the multilayer systems used currently lies in the range of approximately 70%. Therefore a projection objective for EUV microlithography should have has as few optical components as possible, in order to achieve a sufficient light intensity.
In order to achieve a resolution that is as high as possible, on the other hand, it is necessary that the system have an aperture that is as large as possible on the image side.
For lithography systems it is advantageous if the beam path within the projection objective is free of obscurations. Projection objectives should have no mirrors with transmissive areas, especially openings, since transmissive areas lead to shading. If an objective has no mirrors with transmissive areas, the objective has an obscuration-free beam path and the exit pupil of the objective is free of shading and free of obscurations. Furthermore, the aperture diaphragm of such an objective does not need to have a shading device. A disadvantage of a system with an exit pupil being shaded, e.g., a so-called Schwarzchild mirror system, is that structures of a specific size can be imaged only with restrictions. The exit pupil is defined as the image of the aperture diaphragm formed by the optical elements arranged in the beam of the objective between the aperture diaphragm and the image plane.
4-Mirror systems for microlithography have become known, for example, from U.S. Pat. No. 5,315,629 or EP 0 480,617 B1. Such systems, however, permit a numerical aperture only of NA=0.1 on the image side with a sufficient field size of at least 1.0 mm scanning slit width. The limit of resolution lies in the range of 70 nm with the use of x-ray light with a wavelength of 10 to 30 nm.
6-Mirror systems for microlithography have been made known from the publications U.S. Pat. No. 5,153,898; EP-A- 0 252,734; EP-A-0 947,882; U.S. Pat. No. 5,686,728; EP 0 779,528; U.S. Pat. No. 5,815,310; WO 99/57606; and U.S. Pat. No. 6,033,079.
Such 6-mirror systems have a numerical aperture <0.3 on the image side, which leads to a resolution limit in the range of 30 nm with the use of x-ray light with a wavelength of 10-30 nm.
Another disadvantage of both 4-mirror and 6-mirror systems is the fact that there are only a few possibilities for correction of imaging errors.
A microlithography projection objective with eight mirrors has become known from U.S. Pat. No. 5,686,728. This projection objective has a high numerical aperture of NA=0.55 on the image side. Of course, the projection objective known from U.S. Pat. No. 5,686,728 is suitable only for wavelengths longer than 126 nm, since, for example, the angle of incidence of the chief ray of the field point, which lies on the axis of symmetry in the center of the object field is so large that this 8-mirror system cannot be operated in the EUV wavelength region from 10 to 30 mn. Another disadvantage of the system according to U.S. Pat. No. 5,686,728 is that all eight mirrors are formed aspheric and that the angle of the chief ray at the object has a value of 13° with a numerical aperture of 0.11 on the object side.
SUMMARY OF THE INVENTION
A first object of the invention is to provide a suitable projection objective for lithography with short EUV wavelengths in the range of 10 to 30 nm, which is characterized by a large numerical aperture and improved possibilities of imaging correction when compared with previously known projection systems for EUV microlithography.
Another object of the invention is to provide a microlithography projection objective for lithography with wavelengths ≦193 nm, which has both a large aperture and which can be manufactured in a simple manner.
According to the invention, the first object is solved by a microlithography projection objective for EUV lithography with a wavelength in the range of 10-30 nm in that the microlithography projection objective has eight mirrors instead of four or six mirrors.
The inventors have recognized surprisingly that such an objective makes available both a sufficient light intensity as well as a sufficiently large numerical aperture in order to meet the requirements for high resolution. Furthermore such an objective provides sufficient possibilities for imaging correction.
In order to achieve a resolution as high as possible, in an advantageous embodiment, the numerical aperture of the projection objective on the image side is greater than 0.2.
In order to minimize the angle of incidence of the chief ray of the field point, which lies on the axis of symmetry and in the center of the object field, the numerical aperture on the image side of the projection system according to the invention is advantageously limited to NA<0.5.
In order to force a ray bundle, or light bundle, in the direction of the optical axis (HA) and to avoid off-axis segments of the mirrors having a large distance to the optical axis (HA) in a particularly advantageous embodiment the projection objective is designed in such a way that at least one intermediate image of the object field is formed in the beam path of the rays of the projection objective between the object field and the image field.
In the present application, that part of the mirror on which the light rays that are guided through the projection objective impinge is denoted as the off-axis segment of the mirror. The distance of the off-axis segment from the optical axis (HA) in the present application is the distance of the point of incidence of the chief ray of the central field point onto the segment of the mirror from the optical axis (HA).
In order to minimize the angle of incidence on the first mirror of the projection objective according to the invention, in a particularly advantageous embodiment of the invention, a diaphragm, which is preferably circular or nearly circular, is arranged in the light path between first and third mirrors, preferably on or in the vicinity of the first mirror, or on or in the vicinity of the second mirror. “In the vicinity” in the present application is understood as the distance of the diaphragm from the closest mirror that is less than {fraction (1/10)}
th
the distance from the preceding mirror to the mirror in the vicinity of the diaphragm. For example, “in the vicinity of S2” means that the following applies:
{overscore (BS)}
2
≦{fraction (1/10)}{overscore (S1S2)}
Wherein {overscore (BS)}
2
denotes the distance of the diaphragm to the second mirror and {overscore (S1S2)} denotes the distance between the first and second mirror. Such an arrangement permits a minimal separation of the ray bundle in the front part of the objective. This means that the angles of incidence on the first, second and third mirrors are reduced. In addition, such an arrangement of the diaphragm yields a configuration where the off-axis segment of the third mirror lies directly below the optical axis and is nearly a mirror image of the off-axis segment of the first mirror S1. Furthermore, the angles of incide
Mann Hans-Jürgen
Seitz Günther
Ulrich Wilhelm
Carl Zeiss SMT AG
Nguyen Thong
Ohlandt Greeley Ruggiero & Perle LLP
LandOfFree
8-mirror microlithography projection objective does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with 8-mirror microlithography projection objective, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 8-mirror microlithography projection objective will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3232760