Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate
Reexamination Certificate
2006-09-26
2006-09-26
Tsai, H. Jey (Department: 2812)
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
Having insulated gate
C438S287000, C438S052000
Reexamination Certificate
active
07112493
ABSTRACT:
Methods of making non-volatile field effect devices and arrays of same. Under one embodiment, a method of making a non-volatile field effect device includes providing a substrate with a field effect device formed therein. The field effect device includes a source, drain and gate with a field-modulatable channel between the source and drain. An electromechanically-deflectable, nanotube switching element is formed over the field effect device. Terminals and corresponding interconnect are provided to correspond to each of the source, drain and gate such that the nanotube switching element is electrically positioned between one of the source, drain and gate and its corresponding terminal, and such that the others of said source, drain and gate are directly connected to their corresponding terminals.
REFERENCES:
patent: 3448302 (1969-06-01), Shanefield
patent: 4044343 (1977-08-01), Uchida et al.
patent: 4845533 (1989-07-01), Pryor et al.
patent: 4853893 (1989-08-01), Eaton, Jr. et al.
patent: 4876667 (1989-10-01), Ross et al.
patent: 4888630 (1989-12-01), Paterson
patent: 4979149 (1990-12-01), Popovic et al.
patent: 5198994 (1993-03-01), Natori
patent: 5834818 (1998-11-01), Beilstein, Jr. et al.
patent: 5920101 (1999-07-01), Beilstein, Jr. et al.
patent: 6044008 (2000-03-01), Choi
patent: 6048740 (2000-04-01), Hsu et al.
patent: 6128214 (2000-10-01), Kuekes et al.
patent: 6159620 (2000-12-01), Heath et al.
patent: 6198655 (2001-03-01), Heath et al.
patent: 6256767 (2001-07-01), Kuekes et al.
patent: 6314019 (2001-11-01), Kuekes et al.
patent: 6430511 (2002-08-01), Tour et al.
patent: 6459095 (2002-10-01), Heath et al.
patent: 6462977 (2002-10-01), Butz
patent: 6518156 (2003-02-01), Chen et al.
patent: 6548841 (2003-04-01), Frazier et al.
patent: 6559468 (2003-05-01), Kuekes et al.
patent: 6574130 (2003-06-01), Segal et al.
patent: 6587408 (2003-07-01), Jacobson et al.
patent: 6643165 (2003-11-01), Segal et al.
patent: 6706402 (2004-03-01), Rueckes et al.
patent: 6707098 (2004-03-01), Hofmann et al.
patent: 6803840 (2004-10-01), Hunt et al.
patent: 6809462 (2004-10-01), Pelrine et al.
patent: 6809465 (2004-10-01), Jin
patent: 2002/0130353 (2002-09-01), Lieber et al.
patent: 2003/0021141 (2003-01-01), Segal et al.
patent: 2003/0021966 (2003-01-01), Segal et al.
patent: 2003/0124325 (2003-07-01), Ruekes et al.
patent: 2003/0165074 (2003-09-01), Segal et al.
patent: 2003/0170930 (2003-09-01), Choi et al.
patent: 2003/0199172 (2003-10-01), Rueckes et al.
patent: 2004/0027889 (2004-02-01), Occhipinti et al.
patent: 2004/0043148 (2004-03-01), Wei et al.
patent: 2004/0085805 (2004-05-01), Segal et al.
patent: 2004/0095837 (2004-05-01), Choi
patent: 2004/0175856 (2004-09-01), Jaiprakash et al.
patent: 2004/0181630 (2004-09-01), Jaiprakash et al.
patent: 2005/0041465 (2005-02-01), Rueckes et al.
patent: 2005/0041466 (2005-02-01), Rueckes et al.
patent: 2005/0047244 (2005-03-01), Rueckes et al.
patent: 2005/0056877 (2005-03-01), Rueckes et al.
patent: 2005/0062035 (2005-03-01), Bertin et al.
patent: WO 03/091486 (2003-11-01), None
patent: WO 04/065655 (2004-08-01), None
patent: WO 04/065657 (2004-08-01), None
patent: WO 04/065671 (2004-08-01), None
Choi, W.B. et al., “Carbon-Nanotube-Based Nonvolatile Memory with Oxide-Nitride-Oxide Film and Nanoscale Channel”.Applied Physics Letters, 2003. 82 (2) 275-277.
Cui, J.B. et al., “Carbon Nanotube Mamory Devices of High Charge Storage Stability,”.Applied Physics Letters, 2002. 81 (17) 3260-3262.
Yoneya N. et al., “Charge transfer control by gate voltage in corssed nanotube junction”,Applied Physics Letters, 2002. 81 (12) 2250-2252.
Kinaret, J.M. et al., “A carbon-nanotube-based nanorelay”,Applied Physics Letters, 2003. 82 (8) 1287-1289.
Javey, Ali et al., “Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators”,Nano Letters, 2002. 2 (9) 929-932.
Fuhrer, M.S. et al., “High-Mobility Nanotube Transistor Memory”,Nano Letters, 2002. 2 (7) 755-759.
Radosavljevic, M. et al., “Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors”,Nano Letters, 2002. 2 (7) 761-764.
Sapmaz, S. et al., “Carbon Nanotubes as Nanoelectromechanical Systems”,Physical Review B, 2003. 67 23514-1-23514-7.
Rueckes, T. et al., “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing”,Science, 2000. 289, 94-97.
Bachtold, A. et al., “Logic Circuits with Carbon Nanotube Transistor”,Scinece, 2001. 294-1317-1320.
Brehob, M. et al., “The Potential of Carbon-based Memory Systems”, 1-5.
Luyken, R.J. et al., “Concepts for hybrid CMOS-molecular non-volatile memories”,Nanotechnology, 2003. 14, 273-276.
Collins, P.G., “Nanotubes for Electronics”,Scientific American, Dec. 2000. 62-69.
Appenzeller, J., et al., “Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes”,Applied Physics Letter, 2001. 78 (21) 3313-3315.
Appenzeller, J., et al., “A 10 nm MOSFET Concept”,Microelectronic Engineering, 2001. 56, 213-219.
Appenzeller, J. et al., “Field-Modulated Carrier Transport in Carbon Nanotube Transistors”Physical Review Letters, 2002. 89 (2) 126801-1-126801-6.
Appenzeller J. et al., “Carbon Nanotube Electronics”,IEEE Transactions on Nanotechnology, 2002. 1 (4) 184-189.
Avouris Ph., “Carbon nanotube electronics”,Chemical Physics, 2002. 281, 429-445.
Collins, P.G., et al., “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown”,Science, 2001. 292, 706-709.
Collins, P.G., “Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes”,Physical Review Letters, 2001. 86 (14) 3128-3131.
Derycke, V., et al., “Carbon Nanotube Inter- and Intramolecular Logic Gates”,Nano Letters, 2001. 1 (9) 453-456.
Derycke, V., “Controlling Doping and Carrier Injection in Carbon Nanotube Transistors”,Applied Physics Letters, 2002. 80 (15) 2773-2775.
Heinze, S., “Carbon Nanotubes as Schottky Barrier Transistors”Physical Review Letters, 2002. 89 (10) 106801-1-106801-4.
Heinze, S., et al., “Unexpected Scaling of the Performance of Carbon Nanotube Transistors”, published on the web Feb. 2003.
Heinze, S., et al., “Electrostatic engineering of nanotube transistors for improved performance”,Applied Physics Letters, 2003. 83 (24) 5038-5040.
Martel, R., et al., “Single- and Multi-Wall Carbon Nanotube Field-Effect Transistors”,Applied Physics Letters, 1998. 73 (17) 2447-2449.
Avouris, Ph., “Molecular Electronics with Carbon Nanotubes”, Accounts of Chemical Research, 35 (12) 1022-1034.
Martel, R. et al., “Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes”,Physical Review Letters, 2001. 87 (25) 256805-1-256805-4.
Martel, R. et al., “Carbon Nanotube Field-Effect Transistors and Logic Circuits”,DAC, 2002. 7.4 94-98.
Radosavljevic et al., “Drain Voltage Scaling in Carbon Nanotube Transistors”,Applied Physics Letters, 2003. 83 (12) 2435-2437.
Radosavljevic et al., “High Performance of Potassium n-Doped Carbon Nanotube Field Effect Transistors”,Applied Physics Letters, 2004. 84 (18) 3693-3695.
Rochefort, A. et al., “Switching Behavior of Semiconducting Carbon Nanotubes Under an External Electric Field”,Applied Physics Letters, 2001. 78(17) 2521-2523.
Wind, S.J. et al., “Lateral Scaling in Carbon-Nanotube Field-Effect Transistors”,Physical Review Letters, 2003. 91 (5) 058301-1-058301-4.
Wind, S.J. et al., “Transistor Structures for the Study of Scaling in Carbon Nanotubes”,J. Vac. Sci. Technol. B, 2003. 21 (6) 2856-2859.
Bertin Claude L.
Rueckes Thomas
Segal Brent M.
Nantero Inc.
Tsai H. Jey
Wilmer Cutler Pickering Hale and Dorr LLP
LandOfFree
Method of making non-volatile field effect devices and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of making non-volatile field effect devices and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making non-volatile field effect devices and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3531813