Method and system for estimating jitter in a delay locked loop

Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C716S030000, C716S030000, C716S030000

Reexamination Certificate

active

06691291

ABSTRACT:

BACKGROUND OF INVENTION
To increase processor performance, clock frequencies used by microprocessors, often referred to as “CPUs”, have increased. Also, as the number of circuits that can be used in a CPU has increased, the number of parallel operations has risen. Examples of efforts to create more parallel operations include increased pipeline depth and an increase in the number of functional units in super-scalar and very-long-instruction-word architectures. As processor performance continues to increase, the result has been a larger number of circuits switching at faster rates. Thus, from a design perspective, important considerations, such as power, switching noise, and signal integrity must be taken into account.
Higher frequencies for an increased number of circuits also increase switching noise on the power supply. If the components responsible for carrying out specific operations do not receive adequate power in a timely manner, computer system performance is susceptible to degradation. The switching noise may have a local or global effect. Circuits that create large amounts of noise may be relatively isolated; however, they may also affect other circuits, possibly involving very complex interactions between the noise generation and the function of affected circuits. Thus, providing power to the components in a computer system in a sufficient and timely manner has become an issue of significant importance.
As the frequencies of modern computers continue to increase, the need to rapidly transmit data between chip interfaces also increases. To accurately receive data, a clock is often sent to help recover the data. The clock determines when the data should be sampled by a receiver's circuits.
The clock may transition at the beginning of the time the data is valid. The receiver would prefer, however, to have a signal during the middle of the time the data is valid. Also, the transmission of the clock may degrade as it travels from its transmission point. In both circumstances, a delay locked loop, or DLL, can regenerate a copy of the clock signal at a fixed phase shift from the original.
FIG. 1
a
shows a section of a typical computer system component (
5
). Data (
8
) that is ‘n’ bits wide is transmitted from circuit A (
6
) to circuit B (
7
). To aid in the recovery of the transmitted data, a clock composed of a clock signal (
9
), or CLK, is also transmitted with the data. The circuits could also have a path to transmit data from circuit B (
7
) to circuit A (
6
) along with an additional clock (not shown). The clock signal (
9
) may transition from one state to another at the beginning of the data transmission. Circuit B (
7
) requires a signal temporally located some time after the beginning of the valid data. Furthermore, the clock signal (
9
) may have degraded during transmission. The DLL has the ability to regenerate the clock signal (
9
) to a valid state and to create a phase shifted version of the clock to be used by other circuits, for example, a receiver's sampling signal. The receiver's sampling signal determines when the input to the receiver should be sampled. The performance of a DLL is critically related to the stability of its voltage supply.
FIG. 1
b
shows a section of a typical power supply network (
10
) of a computer system. The power supply network (
10
) may be representative of a single integrated circuit, or “chip”, or equally an entire computer system comprising multiple integrated circuits. The power supply network (
10
) has a power supply (
12
) that includes a power supply line (
14
) and a ground line (
16
) through an impedance network Z
1
(
18
). Impedance networks are a collection of passive elements that result from inherent resistance, capacitance, and/or inductance of physical connections. A power supply line (
22
,
23
) and a ground line (
24
,
25
) facilitate power supply to a circuit A (
20
) and circuit B (
26
), respectively. Power supply line (
23
) and ground line (
25
) also supply circuit C (
30
) through another impedance network Z
2
(
28
) and additional impedance networks and circuits, such as impedance network Z
n
(
22
) and circuit N (
34
). The impedance network and connected circuits may be modeled in simulation so that the designer can better understand the behavior of how the circuits interact and interdependencies that exist.
Still referring to
FIG. 1
b
, circuit A (
20
), circuit B (
26
), circuit C (
30
), and circuit N (
34
) may be analog or digital circuits. Also, circuit A (
20
), circuit B (
26
), circuit C (
30
), and circuit N (
34
) may generate and/or be susceptible to power supply noise. For example, circuit C (
30
) may generate a large amount of power supply noise that affects the operation of both circuit B (
26
) and circuit N (
34
). The designer, in optimizing the performance of circuit B (
26
) and circuit N (
34
), requires an understanding of the characteristics of the power supply noise.
SUMMARY OF INVENTION
According to one aspect of the present invention, a method for estimating jitter in a delay locked loop comprises inputting a representative power supply waveform having noise into a simulation of the delay locked loop, and estimating jitter of the delay locked loop from the simulation.
According to another aspect of the present invention, a computer system for estimating jitter in a delay locked loop comprises a processor; a memory; and software instructions stored in the memory adapted to cause the computer system to input a representative power supply waveform having noise into a simulation of the delay locked loop, and estimate jitter of the delay locked loop from the simulation.
According to another aspect of the present invention, a computer-readable medium that has recorded instructions thereon executable by a processor, where the instructions are adapted to input a representative power supply waveform having noise into a simulation of a delay locked loop, and estimate jitter of the delay locked loop from the simulation.
Other aspects and advantages of the invention will be apparent from the wing description and the appended claims.


REFERENCES:
patent: 5600280 (1997-02-01), Zhang
patent: 5818270 (1998-10-01), Hamza
patent: 6037812 (2000-03-01), Gaudet
patent: 6075406 (2000-06-01), Lee et al.
patent: 6229363 (2001-05-01), Eto et al.
patent: 6378080 (2002-04-01), Anjo et al.
patent: 6380774 (2002-04-01), Saeki
patent: 6462623 (2002-10-01), Horan et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for estimating jitter in a delay locked loop does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for estimating jitter in a delay locked loop, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for estimating jitter in a delay locked loop will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3352385

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.