Refresh initiated precharge technique for dynamic random...

Static information storage and retrieval – Read/write circuit – Data refresh

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S203000, C365S230080, C365S233100

Reexamination Certificate

active

06667927

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates, in general, to the field of integrated circuit memory devices and those devices incorporating embedded memory arrays. More particularly, the present invention relates to a refresh initiated precharge technique using look-ahead refresh of especial utility with respect to dynamic random access memory (“DRAM”), synchronous DRAM (“SDRAM”), specialty DRAM and embedded DRAM and SDRAM integrated circuit (“IC”) devices.
It has long been a goal of memory design to increase the performance of DRAM in order to support higher speed processors. One method of increasing DRAM performance is to increase the “read” and “write” data rate across the memory bus. SDRAM access times and burst data rates are constantly improving by manufacturing process “shrinks” and improved interconnect technology. Additionally, improved command bus utilization has been achieved by reducing the number of instructions needed to perform certain memory operations. In general, the fewer command cycles which are required for the execution of memory commands results in more bus cycles which are then available for memory data transfers.
To date, several approaches have been used to minimize the number of command cycles needed to access SDRAM devices and embedded arrays. One example is the use of “burst accesses” which utilize a single “read” or “write” command execution in order to read or write to multiple sequential words. Another technique for reducing the number of command cycles required to access SDRAMs is the use of an “auto-precharge” mode of operation. Auto-precharge is a programmable mode wherein a “precharge” operation automatically occurs at the end of a predetermined number of burst “read” or “write” cycles without requiring the assertion of an external “precharge” command. Similarly, the execution of a “refresh” command in SDRAMs results in the device automatically precharging at the end of the “refresh” operation.
A “refresh” or “active” command can occur on any clock cycle in an integrated circuit memory, requiring internal (on-chip) detection of the cycle type being executed. This detection process slows down the row address path within the device. On-chip refresh circuitry has been incorporated in DRAM designs for several decades. When first introduced, a separate refresh pin was used to inform the DRAM to execute a refresh operation using internally generated addresses instead of a normal, externally supplied row address. Later, /CAS-before-/RAS (CAS=column address strobe, and RAS=row address strobe) commands were used to enable on-chip refresh cycles. When /CAS was “high” and /RAS went “low”, a normal row selection was done using the external address supplied to the time when /RAS went “low”. However, if /CAS was “low” when /RAS went “low”, then a refresh operation was executed using an internally generated refresh address.
Conventional SDRAMs currently support two different types of refresh operations: auto-refresh and self-refresh. Auto-refresh uses a specific command instruction: /CS (chip select), /RAS, and /CAS “low” with /WE (write enable) “high” that is sampled at the rising edge of the DRAM's input clock signal. The self-refresh command is similar to auto-refresh, but occurs concurrently with entering power-down mode. In self-refresh operation, the device periodically executes refresh cycles (which are self-timed) to maintain stored data integrity during power-down mode.
In the past, incorporating on-chip refresh techniques using the methods described above, had little impact on device performance. However, as the operating frequency of DRAMs and SDRAMs has increased, the inclusion of on-chip refresh using conventional methods has had an impact on row access performance. With present methods, during any cycle that an active command can be executed, a refresh command could have been executed instead, provided the device had been previously idle (in precharge state.) For this reason, the on-chip circuitry must hold-off row selection while the appropriate address is selected, depending on whether the present instruction is an “active” or a “refresh” command. This process is complicated in most instances and a command address latch is used to hold either the externally supplied row address or the internally generated address from the refresh address counter depending on the command. As clock rate increases, the operational time penalty due to selecting which address to use before row selection can be enabled will become a larger percentage of the row select time.
Further, with conventional DRAM-based memory technology, open memory banks must be closed prior to the issuance of a “refresh” command. These banks are required to be closed by issuing individual “precharge” commands to open banks using a “precharge all” to close open banks or “auto-precharge” commands for “read” or “write” cycles to ensure that an opened bank has been closed (or precharged) prior to issuing a refresh command.
SUMMARY OF THE INVENTION
A refresh initiated precharge technique using look-ahead refresh eliminates the need to close banks in a dynamic random access memory (“DRAM”) array prior A to executing a “refresh” command by taking advantage of the fact that the actual initiation of an internal “refresh” operation is delayed by at least one clock cycle from the execution of the external “refresh” command. The technique is effectuated through the issuance of a “refresh” command to cause all banks within the DRAM array to precharge. This precharge occurs prior to the n-cycle delay (where N=1 or more clock cycles) of the internal “refresh” operation.
Consequently, it is then unnecessary to execute specific “precharge” commands to close all open banks prior to executing the “refresh” command which frees otherwise consumed instruction bus bandwidth and guarantees that all banks have been precharged (are idle; a required condition) prior to the initiation of on-chip refresh operations. In this manner, the requirement for precharging all banks is automatically satisfied and the associated controller design may be concomitantly simplified.
Particularly disclosed herein is a method and means for initiating precharge operations to at least one bank of a dynamic random access memory array. The method comprises: supplying a refresh command to the memory array; substantially concurrently precharging the memory array bank in response to the refresh command; and initiating refresh operations to the memory bank at least one clock cycle following the step of supplying the refresh command.
Also disclosed herein is an integrated circuit device including a dynamic random access memory array which comprises: a refresh command input for receiving a refresh command signal thereon; and control logic coupled to receive the refresh command signal for initiating a refresh operation on at least a portion of the memory array in response thereto. The control logic is further operational for initiating a precharge operation to at least one bank of the memory array substantially concurrently with receipt of the refresh command signal.


REFERENCES:
patent: 4344157 (1982-08-01), White, Jr. et al.
patent: 4831594 (1989-05-01), Khosrovi et al.
patent: 5193072 (1993-03-01), Frenkil et al.
patent: 5321661 (1994-06-01), Iwakiri et al.
patent: 5856948 (1999-01-01), Huang et al.
patent: 5999472 (1999-12-01), Sakurai
patent: 6134167 (2000-10-01), Atkinson
patent: 6167484 (2000-12-01), Boyer et al.
patent: 6310814 (2001-10-01), Hampel et al.
patent: 6404689 (2002-06-01), Kirihata et al.
patent: 6411157 (2002-06-01), Hsu et al.
patent: 2002/0080677 (2002-06-01), Watanabe et al.
patent: 2003/0081483 (2003-05-01), De Paor et al.
patent: 2003/0128614 (2003-07-01), Hidaka

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Refresh initiated precharge technique for dynamic random... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Refresh initiated precharge technique for dynamic random..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Refresh initiated precharge technique for dynamic random... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3133738

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.