Method of forming an oxide film

Semiconductor device manufacturing: process – Coating of substrate containing semiconductor region or of... – By reaction with substrate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S770000, C438S787000, C438S151000, C438S771000, C438S788000

Reexamination Certificate

active

06586346

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of forming an oxide film and further a method of manufacturing an electronic device utilizing an oxide film.
2. Description of the Prior Art
In recent years, researchers are attracted by thin film transistors utilizing non-single crystalline semiconductor thin films.
Conventionally, such a non-single crystalline semiconductor thin film is formed on an insulating substrate by chemical vapor deposition, so that a temperature during the film formation is as low as 450° C. or less. Therefore, soda-lime glass, boro-silicate glass, and the like can be used as the substrate.
The thin film transistor recently attracting researchers is a field effect transistor (simply referred to as FET) having the same function as that of MOS FET. The size of the thin film transistor is limited only by the size of the apparatus to be used for formation of a semiconductor thin film constituting the transistor, so that it is easy to form transistors on large-sized substrates. Such large-sized thin film transistors are promising. For example, the large-sized thin film transistors can be used as switching elements of liquid crystal displays having a lot of pixels in the form of matrix or switching elements of one dimensional or two dimensional image sensors or the like.
It is possible to implement a conventional fine processing to the semiconductor thin films. Hence, the thin film transistor can be formed by means of a conventional fine processing, for example photolithography technique. And it is also possible to make the thin film transistor integrated as a function element of a part of monolithic IC.
Referring to
FIG. 2
, a typical structure of a conventional thin film transistor is schematically illustrated.
Source and drain electrodes
24
and
25
are provided on an insulating substrate
20
made of glass and source and drain regions
22
and
23
are provided on the source and drain electrodes
24
and
25
respectively and a non-single crystalline semiconductor thin film
21
is provided on the substrate
20
and a gate insulating film
26
is provided on the semiconductor thin film
21
and a gate electrode
27
is provided on the gate insulating film
26
.
In the thin film transistor, electric current flowing between the source region
22
and the drain region
23
is controlled by a voltage applied to the gate electrode
27
.
A gate oxide film constituting such a thin film transistor was conventionally formed by exposing a semiconductor material to thermal oxidation or by thermal CVD under a reduced or atmospheric pressure, or the like.
Electric characteristics of the thin film transistor largely depend on the quality of a channel region of the semiconductor film and the quality of the gate insulating film. For this reason, a gate insulating film of particularly good quality has eagerly been required.
In the case of the formation of the gate oxide film by exposing a semiconductor material to thermal oxidation or by thermal CVD under a reduced or atmospheric pressure, the temperature during the formation of the gate insulating film should be as high as approximately 600° C. in order to obtain a thin film transistor of good electric characteristics. So that, a heat-resistant substrate material such as quartz glass had to be utilized though it is expensive.
With respect to a method for forming a gate insulating film at a low temperature, a plasma CVD and a sputtering method utilizing an argon gas for sputtering are well-known. This sputtering method is implemented in an atmosphere comprising a large amount of argon, specifically an atmosphere comprising 100 to 80 volume % Ar atoms and 0 to 10 volume % oxygen. This is because probability of an atom or a cluster of atoms being dislodged from a target by collision of one inert gas atom, for example one Ar atom, is high (in other words, sputtering yield of Ar gas is high). However, in both the plasma CVD and the sputtering method using a large amount of argon, the gate insulating film involves numbers of elements (e.g. inert gas elements such as Ar) which was involved in a target or existed in a chamber during the CVD or the sputtering, resulting in generation of fixed electric charges in the gate insulating film. Further, ions of the elements bombard a surface of an activated layer in a thin film transistor and thereby give a damage thereto. Hereupon, a mixed layer of the activated layer and the gate insulating film is formed in the vicinity of an interface between the activated layer and the gate insulating film. As a result, interfacial level is formed at the interface and a thin film transistor of fine characteristics cannot be obtained by any of those methods.
It has been attempted to form a gate insulating film by a photo CVD method, and an interfacial level density of the gate insulating film was about 2×10
10
eV
−1
cm
−2
, almost the same as that of a thermal oxidation film. However, the photo CVD method required a long period of time, in other words, the film formation speed was extremely slow, so that the photo CVD method was not suitable for an industrial application.
Referring now to
FIG. 7
, a network of silicon oxide formed by sputtering in an atmosphere comprising a large amount of argon is illustrated. Symbols O in the drawing indicate oxygen or silicon and symbols X indicate dangling bonds of silicon. A silicon oxide film including a gate insulating film is not dense when quantity of fixed electric charges is large in the silicon oxide film. The larger the number of dangling bonds of silicon in the silicon oxide film is, the larger the quantity of fixed electric charges is. And the larger the number of Ar
+
in the silicon oxide film is, the larger the quantity of fixed electric charges is. Ar
+
and Ar tend to stay inside the silicon oxide network as illustrated in
FIG. 7
(Ar
+
and Ar do not tend to be substituted for Si or O in the network). In fact, numbers of dangling bonds of silicon tend to be generated in the silicon oxide film when the silicon oxide film is formed by sputtering in an atmosphere comprising a large amount of argon. This is partly because internal stress is generated in the silicon oxide film by Ar or Ar
+
present inside the silicon oxide network and partly because defects are formed in the silicon oxide film by bombardment of argon with the silicon oxide film during sputtering.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method of forming a dense oxide film by sputtering.
It is another object of the present invention to provide a method of forming a dense gate oxide film by sputtering.
It is another object of the present invention to provide a method of manufacturing a thin film transistor of high performance at a low temperature.
It is another object of the present invention to provide a method of manufacturing a thin film transistor of high reliability at a low temperature.
It is another object of the present invention to provide a method of manufacturing a thin film transistor of high performance at low cost.
It is a further object of the present invention to provide a method of manufacturing a thin film transistor of high reliability at low cost.
An oxide film in accordance with the present invention is formed by sputtering, so that the formation thereof can be carried out at a low temperature.
A gate oxide film in accordance with the present invention is formed by sputtering, so that the formation thereof can also be carried out at a low temperature.
The sputtering is implemented in an atmosphere comprising an inert gas and an oxide gas or an atmosphere comprising an inert gas, an oxide gas, and a gas including halogen elements, wherein the proportion of the inert gas is small in the atmosphere. If the inert gas occupies a large proportion of the atmosphere during sputtering, the formed oxide film involves numbers of inert gas elements, which results in generating fixed electric charges in the oxide film. In particular, in the case o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of forming an oxide film does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of forming an oxide film, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of forming an oxide film will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3066361

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.