Method of forming barrier and seed layers for...

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S751000, C204S192380

Reexamination Certificate

active

06387800

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a robust method of fabrication used for semiconductor integrated circuit devices, and more specifically to the formation of both a copper metal diffusion barrier layer and a copper seed layer, in a single and dual damascene process, to fabricate reliable metal interconnects and contact vias.
2. Description of Related Art
In the fabrication of semiconductor integrated circuits Prior Art methods of forming both a copper metal diffusion barrier layer and a copper seed layer, in dual damascene processing for interconnects and vias, widely use an ion metal plasma (IMP) to sputter deposit these layers prior to electrochemical deposition (ECD) of copper. The ion metal plasma (IMP) methods typically use either a plain deposition without AC/Rf bias or use a deposition with an AC/Rf bias “ON” continuously, or combine the two types into a “two step” process. The terms “ion deposition sputtered” and “ion metal plasma (IMP) refer to sputter deposition, wherein a magnet array is placed behind the target (magnetron sputter deposition) and an inductively coupled Rf source is positioned between the target (cathode) and substrate. Some portion of the sputtered atoms arrive at the substrate in the form of charged ions. Also, the terms “reactive ion deposition” or “reactive ion metal plasma (IMP) refer to ion-deposition sputtering wherein a reactive gas is supplied during sputtering, e.g., sputtering of Ta in N
2
to form a TaN barrier layer. Related patents and relevant literature now follow as Prior Art.
U.S. Pat. No. 5,882,399 (Ngan et al.) describes an ion metal plasma (IMP) sputter process and tool set. The aluminum <111> crystal orientation content of an aluminum interconnect layer or the copper <111> crystal orientation content of a copper interconnect can be maintained at a consistently high value during the processing of an entire series of semiconductor substrates in a given process chamber. To provide the stable and consistent aluminum <111> content, or the stable and consistent copper <111> content, it is necessary that the barrier layer structure underlying the aluminum or the copper have a consistent crystal orientation throughout the processing of the entire series of substrates, as well. To ensure the consistent crystal orientation content of the barrier layer structure, it is necessary to form the first layer of the barrier layer structure to have a minimal thickness of at least about 150 Å, to compensate for irregularities in the crystal orientation which may by present during the initial deposition of this layer. As an alternative to increasing the thickness of the first layer of the barrier layer structure, this first layer can be deposited at a low process chamber pressure, so that harmful irregularities in the crystal orientation are eliminated.
U.S. Pat. No. 5,654,233 (Yu) describes a barrier layer process that is interrupted with a partial etch back using reactive ion etch (RIE) to planarize an excessively thick barrier layer. It teaches a process for creating a planar topography and enhanced step coverage for the fabrication of contact/via holes in sub-half-micron diameter range with high height vs. dimension aspect ratio. This is accomplished by interrupting the deposition of the barrier layer in the contact/via lining with a programmed reactive ion etching process, which will protect the thin barrier lining in the bottom part of the contact hole, but will etch off and planarize the excessively thick barrier layer near the opening of the hole. The resulting barrier layers show a disrupt columnar film structure which provides better barrier during subsequent metal fill deposition process.
U.S. Pat. No. 5,897,368 (Cole, Jr. et al.) teaches a method for fabricating metallized vias with steep sidewalls. It includes applying a first seed layer extending over a horizontal surface and via sidewalls of a dielectric material and exposed underlying contact metallization; removing at least some of the first seed layer from the contact metallization and the horizontal surface while leaving a sufficient amount of the first seed layer on the sidewalls as a catalyst for subsequent application of a third seed layer; sputtering a second seed layer over the contact metallization and the horizontal surface; using an electroless solution to react with the first seed layer and apply the third seed layer over the sidewalls; and electroplating an electroplated layer over the second and third seed layers.
U.S. Pat. No. 5,821,160 (Jain) describes a process for forming a semiconductor device in which an insulating layer is nitrided and then covered by a thin adhesion layer before depositing a composite copper layer. This process does not require a separate diffusion barrier as a portion of the insulating layer has been converted to form a diffusion barrier film. Additionally, the adhesion layer is formed such that it can react with the interconnect material resulting in strong adhesion between the composite copper layer and the diffusion barrier film, as well as, allow a more continuous interconnect and via structure.
U.S. Pat. No. 5,316,974 (Crank) describes a process for forming a copper seed layer. A metallized structure is formed from a copper seed layer and a copper structure. Semiconductor devices to be connected are covered by a conductive barrier layer. An oxide layer is then deposited over the barrier layer and patterned using standard photolithographic techniques and an anisotropic plasma etch. Vertical side walls are formed by the etch and an HF deglaze. A seed layer is then sputtered onto a photoresist layer and the exposed barrier layer. After stripping the photoresist and the seed layer thereon, the copper structure is electroplated over the remaining seed layer. The structure thus formed has approximately vertical sidewalls for improved contact with subsequent layers.
SUMMARY OF THE INVENTION
It is a general object of the present invention to provide a new and improved robust method of forming both a copper metal diffusion barrier layer and a copper seed layer, in a single and dual damascene process, to fabricate reliable metal interconnects and contact vias.
For completeness provided by the present invention, is a semiconductor substrate with a an insulting layer thereon. A copper metal interconnect typically is patterned within an insulating layer. In addition, a layer of interlevel dielectric (ILD) is deposited and patterned into a trench structure or “gap” opening. Provided can be both a single and dual damascene structure.
A more specific object of the present invention is to provide an improved method of forming an integrated circuit in which the metal diffusion barrier layer and copper seed layer are both deposited by an improved method of deposition which differs significantly from conventional methods. The present invention makes use of the following deposition techniques for the barrier layer and copper seed layer: “ion deposition sputtering” and “ion metal plasma” (IMP) sputtering, wherein a magnet array is placed behind the target (magnetron sputter deposition) and an inductively coupled Rf source is positioned between the target (cathode) and substrate. Some portions of the sputtered atoms arrive at the substrate in the form of charged ions. In addition, the present invention makes use of “reactive ion deposition” or “reactive ion metal plasma (IMP), wherein a reactive gas is supplied during sputtering in the deposition of a barrier layer of Ta in N
2
.
The main embodiments of the present invention, the above and other objectives are realized by using a multi-step method of fabricating metal barrier layer and copper seed layer. The present invention teaches a method of combining ion metal plasma (IMP) deposition techniques, i.e., with and without AC/Rf bias, in a series of steps or cycles (of at least four or more cycles depending on device geometry), of AC/Rf bias “ON”, AC/Rf bias “OFF”, to form both the copper metal diffusion barrier (reactive IMP) and then

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of forming barrier and seed layers for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of forming barrier and seed layers for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of forming barrier and seed layers for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2840661

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.