Chemistry: electrical and wave energy – Processes and products – Coating – forming or etching by sputtering
Reexamination Certificate
1997-05-14
2001-04-03
Kalafut, Stephen (Department: 1745)
Chemistry: electrical and wave energy
Processes and products
Coating, forming or etching by sputtering
C204S298060, C204S298080, C204S298090, C204S298150, C118S7230IR
Reexamination Certificate
active
06210539
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to plasma generators, and more particularly, to a method and apparatus for generating a plasma to sputter deposit a layer of material in the fabrication of semiconductor devices.
Low density plasmas have become convenient sources of energetic ions and activated atoms which can be employed in a variety of semiconductor device fabrication processes including surface treatments, depositions, and etching processes. For example, to deposit materials onto a semiconductor wafer using a sputter deposition process, a plasma is produced in the vicinity of a sputter target material which is negatively biased. Ions created adjacent to the target impact the surface of the target to dislodge, i.e., “sputter” material from the target. The sputtered materials are then transported and deposited on the surface of the semiconductor wafer.
Sputtered material has a tendency to travel in straight line paths from the target to the substrate being deposited, at angles which are oblique to the surface of the substrate. As a consequence, materials deposited in etched trenches and holes of semiconductor devices having trenches or holes with a high depth to width aspect ratio, can bridge over, which is undesirable; to prevent this, the sputtered material can be redirected into substantially vertical paths between the target and the substrate by negatively charging the substrate to position vertically oriented electric fields adjacent the substrate if the sputtered material is sufficiently ionized by the plasma. However, material sputtered in a low density plasma often has an ionization degree of less than 10% which is usually insufficient to avoid the formation of an excessive number of cavities. Accordingly, it is desirable to increase the density of the plasma to increase the ionization rate of the sputtered material in order to decrease the formation of unwanted cavities in the deposition layer. As used herein, the term “dense plasma” is intended to refer to one that has a high electron and/or ion density.
There are several known techniques for exciting a plasma with RF fields including capacitive coupling, inductive coupling and wave heating. In a standard inductively coupled plasma (ICP) generator, RF current passing through a coil generates a plasma in a region surrounded by the coil, the plasma consisting of electromagnetic currents. These currents heat the conducting plasma by ohmic heating, so that it is sustained in steady state. As shown in U.S. Pat. No. 4,362,632, for example, current through a coil is supplied by an RF generator coupled to the coil through an impedance-matching network, such that the coil acts as the first winding of a transformer. The plasma acts as a single turn second winding of the transformer.
A high density plasma typically requires the chamber to be operated at a relatively high pressure. As a result, the frequency of collisions between the plasma ions and the deposition material atoms is increased and the scattering of the deposition atoms is likewise increased. This scattering of the deposition atoms typically causes the deposition layer on the substrate to be thicker on that portion of the substrate aligned with the center of the target and thinner in the outlying regions. Such nonuniformity of deposition is often undesirable in the fabrication of semiconductor devices.
It is recognized that the uniformity with which an etching or deposition operation across the surface of a substrate is adversely affected by variations in the density of the ionized plasma across the surface of the substrate. As a consequence, the uniformity of the plasma density across the substrate surface can be improved, it is believed that the uniformity of the resulting etching or deposition operation can likewise be improved.
A number of designs and arrangements for plasma generating coils have been proposed which are intended to improve the uniformity of the generated plasma. Typically, one or more coils are disposed at locations above the wafer surface and according to many of these proposals, the coils are located outside of the chamber in which the plasma itself is confined. Investigations have indicated that these prior coil arrangements tend to produce plasma fields which have substantial plasma density nonuniformity across the wafer surface.
BRIEF SUMMARY OF THE INVENTION
It is a primary object of the present invention to substantially improve the uniformity of plasma potential or density across the surface of a wafer which is being subjected to various processing operations.
The above and other objects are achieved, according to one embodiment of the present invention, by an apparatus for processing a substrate in the presence of a plasma, in which an RF coil is disposed at an elevation proximate to a plane containing a substrate support. It has been found that such an arrangement can cause the plasma maintained by the coil to have a uniform potential and density parallel to the substrate support. In the illustrated embodiment, the apparatus comprises a chamber enclosing a region maintained at a low pressure; a substrate support disposed in the region and having a substantially horizontal substrate support surface for supporting a substrate; and an RF coil disposed in the chamber for producing a radio frequency field within the chamber to maintain a plasma above the substrate support surface. The coil surrounds a vertical region which contains the substrate support surface and is disposed near the plane of the substrate support surface to cause the plasma to have a more uniform density and potential across substantially the entire surface of the substrate.
REFERENCES:
patent: 3730867 (1973-05-01), Albers et al.
patent: 4336118 (1982-06-01), Patten et al.
patent: 4361472 (1982-11-01), Morrison, Jr.
patent: 4362632 (1982-12-01), Jacob
patent: 4422896 (1983-12-01), Class et al.
patent: 4626312 (1986-12-01), Tracy
patent: 4661228 (1987-04-01), Mintz
patent: 4716491 (1987-12-01), Ohno et al.
patent: 4792732 (1988-12-01), O'Loughlin
patent: 4842703 (1989-06-01), Class et al.
patent: 4844775 (1989-07-01), Keeble
patent: 4865712 (1989-09-01), Mintz
patent: 4871421 (1989-10-01), Ogle et al.
patent: 4918031 (1990-04-01), Flamm et al.
patent: 4925542 (1990-05-01), Kidd
patent: 4941915 (1990-07-01), Matsuoka et al.
patent: 4948458 (1990-08-01), Ogle
patent: 4990229 (1991-02-01), Campbell et al.
patent: 4999096 (1991-03-01), Nihei et al.
patent: 5065698 (1991-11-01), Koike
patent: 5091049 (1992-02-01), Campbell et al.
patent: 5102496 (1992-04-01), Savas
patent: 5122251 (1992-06-01), Campbell et al.
patent: 5135629 (1992-08-01), Sawada et al.
patent: 5135634 (1992-08-01), Clarke
patent: 5146137 (1992-09-01), Gesche et al.
patent: 5175608 (1992-12-01), Nihei et al.
patent: 5178739 (1993-01-01), Barnes et al.
patent: 5198725 (1993-03-01), Chen et al.
patent: 5206516 (1993-04-01), Keller et al.
patent: 5225740 (1993-07-01), Ohkawa
patent: 5231334 (1993-07-01), Paranjpe
patent: 5234560 (1993-08-01), Kadlec et al.
patent: 5241245 (1993-08-01), Barnes et al.
patent: 5280154 (1994-01-01), Cuomo et al.
patent: 5304279 (1994-04-01), Coultas et al.
patent: 5312717 (1994-05-01), Sachdev et al.
patent: 5346578 (1994-09-01), Benzing et al.
patent: 5361016 (1994-11-01), Ohkawa et al.
patent: 5366590 (1994-11-01), Kadomura
patent: 5368685 (1994-11-01), Kumihashi et al.
patent: 5397962 (1995-03-01), Moslehi
patent: 5401350 (1995-03-01), Patrick et al.
patent: 5404079 (1995-04-01), Ohkuni et al.
patent: 5418431 (1995-05-01), Williamson et al.
patent: 5421891 (1995-06-01), Campbell et al.
patent: 5429070 (1995-07-01), Campbell et al.
patent: 5429710 (1995-07-01), Akiba et al.
patent: 5429995 (1995-07-01), Nishiyama et al.
patent: 5430355 (1995-07-01), Paranjpe
patent: 5433812 (1995-07-01), Cuomo et al.
patent: 5434353 (1995-07-01), Kraus
patent: 5437757 (1995-08-01), Rice et al.
patent: 5464476 (1995-11-01), Gibb et al.
patent: 5503676 (1996-04-01), Shufflebotham et al.
patent: 5525159 (1996-06-01), Hama et al.
patent: 5556501 (1996-09-01), Collins e
Hong Liubo
Tanaka Yoichiro
Wada Yuichi
Applied Materials Inc.
Kalafut Stephen
Konrad Raynes & Victor LLP
Mercado Julian A.
LandOfFree
Method and apparatus for producing a uniform density plasma... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for producing a uniform density plasma..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for producing a uniform density plasma... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2513600